cho phương trình \(ax^2+bx+c=0\left(a\ne0\right)\)) có 2 nghiệm \(x_1;x_2\)thỏa mãn điều kiện \(0\le x_1\le x_2\le2\). Tìm GTLN của biểu thức
\(Q=\frac{2a^2-3ab+b^2}{2a^2-ab+ac}\)
Giả sử phương trình \(ax^2+bx+c=0\left(a\ne0\right)\) có 2 nghiệm là \(x_1\)và \(x_2\). Chứng minh rằng ta có thể phân tích \(ax^2+bx+c=a\left(x-x_1\right)\left(x-x_2\right)\)
Cho phương trình ax2 + bx + c = 0 có 2 nghiệm x1 , x2 thuộc [0;1]. Chứng minh rằng:
\(M=\frac{\left(a-b\right)\left(2a-b\right)}{a\left(a-b+c\right)}\le3\)
Cho phương trình \(ax^2+bx+c=0\) với a, c > 0 có hai nghiệm x1, x2 thỏa mãn điều kiện \(x_1\ge1;x_2\ge1\)
Tìm giá trị nhỏ nhất của biểu thức \(A=\frac{\left(2a-b\right)\left(1+\sqrt{\frac{c}{a}}\right)}{a-b+c}\)
Cho phương trình \(x^{2017}+ax^2+bx+c=0\) với các hệ số nguyên có 3 nghiệm \(x_1;x_2;x_3\). CMR nếu \(\left(x_1-x_2\right)\left(x_2-x_3\right)\left(x_3-x_1\right)\)không chia hết có 2017 thì \(a+b+c+1\)chia hết cho 2017
Đối với phương trình `ax^2 +bx +c=0` \(\left(a\ne0\right)\) và biệt thức \(\Delta=b^2-4ac\)
`-` Nếu \(\Delta>0\) thì phương trình có hai nghiệm phân biệt
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a};x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)
`-` Nếu \(\Delta=0\) thì phương trình có nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)
`-` Nếu \(\Delta< 0\) thì phương trình vô nghiệm
Theo kết luận trên áp dụng với bài sau đây :
`a, 7x^2 -2x+3=0`
`b,6x^2 +x+5=0`
`c, 6x^2 +x-5=0`
Cho phương trình: ax^2 + x + a - 1 = 0.
Tìm a để phương trình có 2 nghiệm phân biệt thỏa mãn \(\left|\frac{1}{x_1}+\frac{1}{x_2}\right|>1\)
cho phương trình \(ax^2+bx+c=0\) \(\left(a\ne0\right)\)có hai nghiệm thuộc đoạn [0;2]. Tìm max của:
\(p=\frac{8a^2-6ab+b^2}{4a^2-2ab+ac}\)
Cho phương trình \(\left(m-1\right)x^2-2mx+m+1=0\)0 với m là tham số
a) CMR: phương trình có 2 nghiệm phân biệt với m #1
b) Xác định giá trị của m để phương trình có tích hai nghiệm bằng 5. Từ đó hãy tính tổng tích của hai nghiệm phương trình đó
c) Tìm một hệ thức giữa hai nghiệm không phụ thuộc vào m
c)Tìm m để phương trình có hai nghiệm \(x_1;x_2\)thỏa mãn hệ thức
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\)