tìm m,n để hpt sau có nghiệm là (2;-1)
\(\left\{{}\begin{matrix}2mx-\left(m+1\right)y=m-n\\\left(m+2\right)x+3ny=3m-3\end{matrix}\right.\)
giúp mình vs ạ, mình cảm ơn trc!
Cho hpt {x-my=2;mx-4y=m-2 a,Tìm m để hpt vô nghiệm b,Tìm m để hpt vô số nghiệm c,Tìm m để hpt có nghiệm duy nhất
1, cho hpt (m+1)x + y=4 và mx+y=2m
m là tham số .tìm m để hpt có nghiệm (x;y) thỏa mãn x+y =2
2, cho hpt 3x + (m-1)y=12 và (m-1)x +12y=24
a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y = -1
b, tìm m nguyên để hpt có nghiệm duy nhất là nghiệm nguyên
cho hpt mx + y=3 ,2x - y = 7
a. giải hpt trên vs m=3
b. tìm m để hpt có 1 nghiệm là (3;1)
c. tìm m để hpt có 1 nghiệm là (4;1)
a) m = 3 thì hệ trở thành \(\hept{\begin{cases}3x+y=3\\2x-y=7\end{cases}}\Leftrightarrow\hept{\begin{cases}6x+2y=6\left(1\right)\\6x-3y=21\left(2\right)\end{cases}}\)
\(\left(1\right)-\left(2\right)\Leftrightarrow5y=-15\Leftrightarrow y=-3\)
Từ đó suy ra \(x=2\)
Vậy với m = 3 thì hệ có 1 nghiệm (2;-3)
b) HPT không thể có nghiệm (3;1)
c) HPT có nghiệm (4;1) thì \(4m+1=3\Leftrightarrow m=\frac{1}{2}\)
tìm m để hpt : x+y=3m+2 và 3x -2y = 11-m . Tìm m để hpt có nghiệm (x,y) thỏa mãn đạt GTLN
Cho hpt : (m-2)x -3y = -5 và x+my =3 . Chứng minh hpt luôn có nghiệm với mọi m . Tìm nghiệm duy nhất đó
Mọi người giúp mjnh với chứ mai nộp rồi :(
cho hpt x + y = 4 và 2x-my =1
a) Tìm m để hpt vô nghiệm? b) Tìm m để hpt có nghiệm, tìm nghiệm đó?
1) cho hpt: \(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
tìm m để hpt có nghiệm (\(x_0,y_0\)) t/m: \(x_0^2+y_0^2=9m\)
2) cho hpt: \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
tìm m để hpt có nghiệm duy nhất \(\left(x_0,y_0\right)\) t/m: \(x_0^2-2x_0-y_0>0\)
giúp mk vs mk cần gấp
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
Cho hpt gồm 2 pt sau : 5x-2y=3 và (m+1)x+3y=5 (với m là tham số)
a) Với giá trị nào của m thì hpt đã cho vô nghiệm ,có nghiệm duy nhất
b) tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn x+y=5
a) *)Để hệ đã cho vô nghiệm \(\frac{a}{a'}=\frac{b}{b'}\ne\frac{c}{c'}\)
\(\Rightarrow\hept{\begin{cases}\frac{m+1}{5}=\frac{3}{-2}\\\frac{m+1}{5}\ne\frac{5}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}-2m-1=15\\3m+3\ne25\end{cases}\Leftrightarrow}\hept{\begin{cases}m=\frac{-17}{2}\\m\ne\frac{22}{3}\end{cases}}}\)
*) Để hệ có nghiệm duy nhất
\(\Rightarrow\frac{a}{a'}\ne\frac{b}{b'}\Rightarrow\frac{m+1}{5}\ne\frac{3}{-2}\)
\(\Leftrightarrow-2m-2\ne15\)
\(\Leftrightarrow m\ne\frac{-17}{2}\)
b) Để hpt có nghiệm duy nhất \(\hept{\begin{cases}m\ne\frac{-17}{2}\\x+y=5\end{cases}}\)
Thay x=5-y vào hpt ta có \(\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\5\left(5-y\right)-2y=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)\left(5-y\right)+3y=5\\25-7y=3\end{cases}\Leftrightarrow\hept{\begin{cases}m=\frac{44}{13}\\y=\frac{22}{7}\end{cases}}}\)
Vậy \(m=\frac{44}{13}\)thỏa mãn điều kiện
Cho hpt \(\left\{{}\begin{matrix}mx-2y=2m-1\\2x-my=9-3m\end{matrix}\right.\)
a) Tìm m để hpt có nghiệm duy nhất (x,y) và tìm nghiệm (x,y) đó
b) Với (x,y) là nghiệm duy nhất
1. Tìm đẳng thức liên hệ giữa x,y không phụ thuộc vào m
2. Tìm m để \(x^2+y^2\) đạt GTNN
3. Tìm m để \(xy\) đạt GTLN
a:
Để hệ có nghiệm duy nhất thì m/2<>-2/-m
=>m^2<>4
=>m<>2 và m<>-2
Cho hpt gồm 2 pt sau : 5x-2y=3 và (m+1)x+3y=5 với m là tham số
a)Với giá trị nào của m thì hpt đã cho vô nghiệm , có nghiệm duy nhất
b) Tìm m để hpt có nghiệm duy nhất (x;y) thỏa mãn x+y=5
Thongcamtuikhongbietviethephuongtrinh :(
Cho hpt: \(\hept{\begin{cases}\left(2m+1\right)x-3y=3m-2\\\left(m+3\right)x-\left(m+1\right)y=2m\end{cases}}\)
a)Tìm m để hpt có nghiệm.
b) Tìm m để hpt có nghiệm duy nhất(x,y) thỏa \(x\ge2y\)
c)Tì m để hpt có nghiệm duy nhất (x;y) sao cho biể thức P=\(x^2+3y^2\)