Tính P(x)
P(x)=-80x6+80x5-80x4+...+80x+15 ; x=79
P(x)=-80x6+80x5-80x4+...+80x+15 ; x=79
tính P(x)
Lời giải:
\(P=-80(x^6-x^5+x^4-x^3+x^2-x+1)+95\)
\(=-(x+1)(x^6-x^5+x^4-x^3+x^2-x+1)+95=-(x^7+1)+95\)
\(=-79^7+94\)
Tính giá trị biểu thức
P(x)=x7-80x6+80x5-80x4+...+80x+15 với x+7
Tính P(x)
P(x)=-80x6+805-80x4+...+80x+15 ; x=79
giúp tôi với
x=79
nên x+1=80
\(P\left(x\right)=-80x^6+80x^5-80x^4+...+80x+15\)
\(=-x^6\left(x+1\right)+x^5\left(x+1\right)-x^4\left(x+1\right)+...+x\left(x+1\right)+15\)
\(=-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)
\(=-x^7+x+15\)
\(=-79^7+79+15\)
\(=-79^7+94\)
\(x=79\Leftrightarrow x+1=80\\ \Leftrightarrow P\left(x\right)=-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\\ P\left(x\right)=-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\\ P\left(x\right)=-x^7+x+15=-79^7+94\)
Tính: a,P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15 vs x=79
Dễ thấy 80=79+1=x+1
Thay vào P(x) ta có:
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+....+\left(x+1\right)x+15\)
\(P\left(x\right)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+....+x^2+x+15\)
\(P\left(x\right)=x+15=79+15=94\)
tính giá trị biểu thức
P(x)=x^7-80x^6+80x^5+80x^4+80x^3-80x^2+80x+15 tai x=79
Tính giá trị của biểu thức: P(x)=x^7-80x^6+80x^5-80x^4 +...+80x + 15 với x = 79
Thay x+1=80 ta đc:
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5+...+x^2+x+15\)
\(79+15=94\)
\(Ta \) \(có \) \(:\)
\(x = 79 \)\(\Rightarrow\)\(x + 1 = 80\)
\(Thay \) \(x + 1 = 80 \) \(vào \) \(P(x)\) \(ta\) \(được :\)
\(P ( x ) = x ^7 - ( x + 1 )x ^6 + ( x + 1 )x^5\)\(- ( x + 1 )x ^4\)\(+ ...+ ( x + 1 )x + 15\)
\(P ( x ) = x ^7 - x ^7- x^6 + x^6 + x^5 - x^ 5\)\(- x ^4 + x ^4 + ... - x^ 2 + x ^2 + x + 15\)
\(P ( x ) = x + 15\)
\(Thay x = 79 vào P ( x ) ta được :\)
\(P ( x ) = 79 + 15 = 94\)
\(A=x^7-80x^6+80x^5-80x^4+....+80x+15\)
tính A với x=79
Ta có : x = 79
=> x + 1 = 80
Thay vào A ta có : A = x7 - (x + 1)x6 + (x + 1)x5 - (x + 1).x4 + (x + 1).x3 - (x + 1)x2 + (x + 1)x + 15
=> A = x7 - x7 - x6 + x6 + x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x + 15
=> A = x + 15
=> A = 79 + 15
=> A = 94
Tính giá trị của bt:
P(x)=x^7-80x^6+80x^5+...+80x+15
(tại x=79).
tính giá trị của đa thức:
\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)với x=79
Có : x = 79
=> x + 1 = 80
Xét P(x) , có :
\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(P\left(x\right)=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+....+\left(x+1\right)x+15\)
\(P\left(x\right)=x^7-x^7-x^6+x^6+x^5-x^5-x^4+....+x^2+x+15\)
\(P\left(x\right)=x+15\)
\(P\left(79\right)=79+15=94\)