Cho x khác y khác z; x,y,z > 0 . Chứng minh rằng nếu y/x-z=x+y/z=x/y thì x=2y
Cho
Y/-x+z=x+y/z=-x/y(x,y,z khác 0,x khác y, y khác z.tính x/y
\(Cho TLT:\dfrac{x+y}{x-y}=\dfrac{x+z}{x-z}(x khác cộng trừ z, z khác 0, x khác 0) Tính M=\dfrac{2019(y)^{2}+2020yz+2021(z)^{2}}{{2020(y)^{2}+2021yz+2022(z)^{2}} \)
Cho x;y;z khác 0 và x+y khác z và y+z khác x thỏa mãn:
\(\dfrac{x^2+y^2-z^2}{2xy}-\dfrac{y^2+z^2-x^2}{2yz}+\dfrac{z^2+x^2-y^2}{2xz}=1\)
Tính P = x + y + z
Đẳng thức đã cho tương đương với:
\(\dfrac{x^2z+y^2z-z^3+y^2x+z^2x-x^3+z^2y+x^2y-y^3}{2yxz}=1\)
\(\Leftrightarrow x^3+y^3+z^3+2xyz-x^2y-y^2z-z^2x-xy^2-yz^2-zx^2=0\)
\(\Leftrightarrow\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)=0\Leftrightarrow z+x=y\) (Do x + y khác z và y + z khác x).
Từ đó P = 2y (Biểu thức của P phụ thuộc vào biến y).
Vậy từ giả thiết đó bạn có thể CMR P=0 đc k
Giúp mk ba mk đg cần gấp
Cho x,y,z khác 0 và x khác y. Tính M=|x|/x + |y|/y + |z|/z + |xyz|/xyz
cho \(^{y^2}\)=x.z,\(z^2\)=y.t.Với x,y,z,t khác 0,y+z khác 0, \(y^3\)+\(z^3\) khác \(t^3\).Chứng minh \(x^3\)+\(y^3\)-2\(z^3\)/\(y^3\)+\(z^3\)-2\(t^3\)=(\(\dfrac{\text{x+y-2z}}{x+z-2t}\))
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
1) \(a=x^2-xy=x\left(x-y\right)\ne0\left(x\ne0,x\ne y\right)\)
mik cần c3 , ai làm giúp mik đc ko
giúp tui với !!!!
cho x,y,z ;x khác y khác z
biết y/x-z=x+y/z=x/y tính x/y
Cho x+y/x-y=z+t/z-t với x khác y và z khác t
cho x,y.z >0 ;x khác y khác z
biết y/x-z=x+y/z=x/y. Tính x/ y
cứu với!!!!!!!!!!!!!!!!!! Mai đi học rồi đó!!