Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm bá hoàng
Xem chi tiết
Phạm Xuân Nhật Huy
Xem chi tiết
Vũ Đào
8 tháng 4 2023 lúc 17:39

Nhận thấy 1/1.2.3 = 1/2.3;    1/1.2.3.4 < 1/3.4;   1/1.2.3.4.5 < 1/4.5;                               1/1.2.3...n  < 1/n(n-1)

=> 1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/n(n-1)

=>  1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 1 + 1 -1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+            1/n-1 - 1/n

=>1 + 1/1.2 + 1/1.2.3 +... + 1/1.2.3...n < 2  - 1/n < 2

=> đpcm

Phạm Xuân Nhật Huy
Xem chi tiết
Switch Starding
Xem chi tiết
sao băng
Xem chi tiết
Thanh Tùng DZ
15 tháng 12 2017 lúc 19:20

A = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.20 

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(A=\frac{1}{4}-\frac{1}{2.19.20}< \frac{1}{4}\)

Tâm Di
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Akai Haruma
19 tháng 10 2018 lúc 22:53

Lời giải:

\(A=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{2011}{1.2.3...2012}\)

\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{2012-1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...2011}-\frac{1}{1.2.3...2012}\)

\(=1-\frac{1}{1.2...2012}< 1\)

Ta có đpcm.

Vũ Thị Nguyên Mai
Xem chi tiết
Đào Trọng Luân
17 tháng 5 2017 lúc 16:02

Ta có: 1.2.3.4...2004 = 1.2.3.4.5...401...2004 = [5.401].1.2.3.4.6....2004 = 2005.1.2.3....2004 chia hết cho 2005

=> Khi nhân với 1 + 1/2 + ... + 1/2004 cũng chia hết cho 2005

AI THẤY ĐÚNG NHỚ ỦNG HỘ

ST
17 tháng 5 2017 lúc 16:41

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\)

\(=\left(1+\frac{1}{2004}\right)+\left(\frac{1}{2}+\frac{1}{2003}\right)+\left(\frac{1}{3}+\frac{1}{2002}\right)+...+\left(\frac{1}{1002}+\frac{1}{1003}\right)\)

\(=\frac{2005}{1.2004}+\frac{2005}{2.2003}+\frac{2005}{3.2002}+...+\frac{2005}{1002.1003}\)

\(=2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+\frac{1}{3.2002}+....+\frac{1}{1002.1003}\right)\)

\(\Rightarrow A=1.2.3.....2004.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)\)\(=1.2.3.....2004.2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+....+\frac{1}{1002.1003}\right)\)chia hết cho 2005 (đpcm)