Cho a , b , c , d là số nguyên ; biết tích a.b là số liền sau của tích c.d và a+b=c+d
( dấu . là dấu nhân)
Cho A=a+b/a+b+c + b+c/b+c+d + c+d/c+d+a + d+a/d+a+b ( với a;b;c;d là các số nguyên dương ) . Chứng tỏ biểu thức A không là số nguyên
ta có bất đẳng thức sau :
\(\frac{a+b}{a+b+c+d}< \frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
tương tự ta sẽ có
\(\frac{2\left(a+b+c+d\right)}{\left(a+b+c+d\right)}< A< \frac{3\left(a+b+c+d\right)}{\left(a+b+c+d\right)}\) hay 2<A<3 nên A không phải là số nguyên
Cho a,b,c,d là 4 số nguyên dương bất kì
Chứng tỏ : \(\dfrac{a}{a+b+c}\)+\(\dfrac{b}{a+b+d}\)+\(\dfrac{c}{b+c+d}\)+\(\dfrac{d}{a+c+d}\)không phải là số nguyên
Cho a,b,c,d là bốn số nguyên dương, chứng minh a/b+c+d + b/a+c+d + c/a+b+d + d/a+b+c không phải là số nguyên (chứng minh nó bé hơn hai thôi cũng được)
Cho a,b,c,d là số nguyên biết a+b=c+d và c*d là các số nguyên liên tiếp .CMR c=d
Cho hàm số f x = ln 1 − 1 x 2 . Biết rằng f 2 + F 3 + ... + f 2018 = ln a − ln b + ln c − ln d với a, b, c, d là các số nguyên dương, trong đó a, c, d là các số nguyên tố và a < b < c < d . . Tính P = a + b + c + d .
A. 1986
B. 1698
C. 1689
D. 1968
Cho đa Thức P(x) có các hệ số đều là số nguyên và a,b,c,d là bốn số nguyên lẻ phân biệt thỏa mãn P(a)=P(d)=-1,P(b)=P(c)=3 .Biết rằng a>b>c chứng minh rằng a,b,c,d là bốn số nguyên lẻ liên tiếp (theo 1 thứ tự nào đó )
Sử dụng quy tắc đa thức: \(P\left(a\right)-P\left(b\right)\) chia hết \(a-b\) cho đa thức hệ số nguyên
Do a;b;c;d lẻ nên hiệu của chúng đều chẵn
\(P\left(c\right)-P\left(a\right)=4\Rightarrow4⋮c-a\Rightarrow\left[{}\begin{matrix}c-a=-2\\c-a=-4\end{matrix}\right.\)
Tương tự ta có \(\left[{}\begin{matrix}b-a=-2\\b-a=-4\end{matrix}\right.\)
Mà \(a>b>c\) \(\Rightarrow b-a>c-a\Rightarrow\left[{}\begin{matrix}b-a=-2\\c-a=-4\end{matrix}\right.\)
\(\Rightarrow a;b;c\) là 3 số nguyên lẻ liên tiếp
Lại có \(P\left(b\right)-P\left(d\right)=4⋮b-d\Rightarrow b-d=\left\{-4;-2;2;4\right\}\)
Tương tự: \(c-d=\left\{-4;-2;2;4\right\}\) (1)
Do đã chứng minh được a; b và c là 2 số lẻ liên tiếp \(\Rightarrow c=b-2\) ; \(c=a-4\) (2)
- Nếu \(b-d=-4\Rightarrow c-d=b-2-d=-4-2=-6\) không thỏa mãn (1) (loại)
- Nếu \(b-d=-2\Rightarrow c-d=b-d-2=-4\) \(\Rightarrow c=d-4\)
\(\Rightarrow d=a\) theo (2) trái giả thiết a;b;c;d phân biệt (loại)
- Nếu \(b-d=2\Rightarrow c-d=b-d-2=0\Rightarrow c=d\) trái giả thiết c;d phân biệt (loại)
- Nếu \(b-d=4\Rightarrow c-d=b-d-2=2\)
\(\Rightarrow d\) là số lẻ liền trước của c
Vậy a;b;c;d là bốn số nguyên lẻ liên tiếp theo thứ tự \(a>b>c>d\)
Cho f(x) là đa thức hệ số nguyên a,b,c,d mà a<b,f(a)=f(b)=1;c<d;f(c)=f(d)=-1,a<c.Chứng minh a,b,c,d là 4 số nguyên liên tiếp
bạn ơi mình nghĩ là đâu thể gọi dạng của f(x) được ?
Cho a,b,c là các số nguyên dương. Hãy chứng tỏ rằng: D=(a/a+b)+(b/b+c)+(c/c+a) không phải là số nguyên
+ Vì a+ b + c > a + b => \(\frac{a}{a+b+c}
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(1
Cho các số nguyên dương \(a,b,c,d\) phân biệt thỏa mãn \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}\)
là số nguyên. Chứng minh rằng \(abcd\) là số chính phương.
Câu hỏi của lep. - Toán lớp 8 - Học trực tuyến OLM
cho các số nguyên a,b,c,d biết (-2)*a=b ; 2c=d và b,d là hai số nguyên âm so sánh a với c