Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc Huy
Xem chi tiết
ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Đen đủi mất cái nik
9 tháng 9 2018 lúc 21:26

TA CÓ:

\(a^4b^2+b^4c^2\ge2a^2b^3c,b^4c^2+c^4a^2\ge2b^2c^3a,c^4a^2+a^4b^2\ge2c^2a^3b\)

\(\Rightarrow a^4b^2+b^4c^2+c^4a^2+\frac{5}{9}\ge a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}\)

ĐẶT \(ab=x,bc=y,ca=z\Rightarrow x+y+z=1\)

\(\Rightarrow a^2b^3c+b^2c^3a+c^2a^3b+\frac{5}{9}=x^2y+y^2z+z^2x+\frac{5}{9}\)

TA CẦN C/M:

\(x^2y+y^2z+z^2x+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)        \(\left(=2abc\left(a+b+c\right)\right)\)

ÁP DỤNG BĐT BUNHIA TA CÓ:

\(\left(x^2y+y^2z+z^2x\right)\left(x+y+z\right)\ge\left(xy+yz+zx\right)^2\) DO:\(\left(x+y+z=1\right)\)

VẬY CẦN C/M:

\(\left(xy+yz+zx\right)^2+\frac{5}{9}\ge2\left(xy+yz+zx\right)\)

XÉT HIỆU:

\(\left(xy+yz+zx\right)^2-2\left(xy+yz+zx\right)+1-\frac{4}{9}=\left(xy+yz+zx-1\right)^2-\frac{2^2}{3^2}\)

\(=\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\)

VÌ:

\(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}=\frac{1}{3}\Leftrightarrow xy+yz+zx-\frac{1}{3}\le0\)

\(\Rightarrow\left(xy+yz+zx-\frac{1}{3}\right)\left(xy+yz+zx-\frac{5}{3}\right)\ge0\)

\(\Rightarrow DPCM\)

Bài này mình có hỏi trên mạng ấy bạn bài này nhiều cách lắm tại mình thấy cách này dễ hiểu nên gửi cho b

Không Tên
26 tháng 2 2020 lúc 16:13

Giả sử \(c=min\left\{a,b,c\right\}\)

Ta viết BĐT lại thành:\(\frac{5}{9}\left(ab+bc+ca\right)^3+a^4b^2+b^4c^2+c^4a^2\ge2abc\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(VT-VP=(a-b)^2(a^2c^2+\frac{17}{9}abc^2+b^2c^2+\frac{5}{9}ac^3+\frac{5}{9}bc^3)+(a-c)(b-c)(a^3b+\frac{5}{9}a^2b^2+a^3c+\frac{11}{9}a^2bc+\frac{2}{9}ab^2c+a^2c^2)\ge0\)

Khách vãng lai đã xóa
Phạm Cao Sơn
Xem chi tiết
Trần Thanh Phương
3 tháng 5 2019 lúc 6:21

1) Áp dụng bất đẳng thức AM-GM :

\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)

Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)

tth_new
3 tháng 5 2019 lúc 9:25

1) Anh phương làm lạ zậy?

Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)

Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))

Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)

Vậy P min là 5/2 khi x = 2

Nguyễn Hoàng Minh
Xem chi tiết
Rin Huỳnh
28 tháng 5 2022 lúc 19:24

Rin Huỳnh
28 tháng 5 2022 lúc 19:25

nthv_.
28 tháng 5 2022 lúc 19:29

ôn zăn ik bà, tón gánh hong nổi đâu =))

I am➻Minh
Xem chi tiết
Phan Nghĩa
20 tháng 3 2021 lúc 20:24

Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)

Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)

Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Ta thấy  \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)

Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)

\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)

Dấu "=" xảy ra \(< =>a=b=c=3\)

bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn

Khách vãng lai đã xóa

Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\)  và \(a^2+b^2+c^2\le abc\)

\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)

Tương tự các cái khác ta có

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)

\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"

Học tốt

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Đặng Ngọc Quỳnh
1 tháng 1 2021 lúc 10:18

Đặt bđt là (*)

Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :

\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)

\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)

Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)

Hay \(n\le2\)

Với n=2 . Thay vào (*) : ta cần CM BĐT 

\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)

Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)

Tương tự ta có:

\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)

Ta cần CM: 

\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)

Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)

=> đpcm

Dấu '=' xảy ra khi a=b=c

=> số nguyên dương lớn nhất : n=2( thỏa mãn)

Khách vãng lai đã xóa
Hoàng Thị Ngọc Anh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2023 lúc 4:45

Do \(\left\{{}\begin{matrix}a\ge0\\b\ge1\\a+b+c=5\end{matrix}\right.\) \(\Rightarrow c\le4\)

\(\Rightarrow2\le c\le4\Rightarrow\left(c-2\right)\left(c-4\right)\le0\Rightarrow c^2\le6c-8\)

\(0\le a\le1< 6\Rightarrow a\left(a-6\right)\le0\Rightarrow a^2\le6a\)

\(1\le b\le2< 5\Rightarrow\left(b-1\right)\left(b-5\right)\le0\Rightarrow b^2\le6b-5\)

Cộng vế:

\(a^2+b^2+c^2\le6\left(a+b+c\right)-13=17\)

\(A_{max}=17\) khi \(\left(a;b;c\right)=\left(0;1;4\right)\)

ミ★ɦυүềη☆bùї★彡
Xem chi tiết
Đen đủi mất cái nik
2 tháng 11 2018 lúc 19:37

\(DPCM\Leftrightarrow P=a^2\left(b-c\right)+b^2\left(c-b\right)+c^2\left(1-c\right)\le\frac{108}{529}\)

Ta có: \(0\le a\le b\le c\le1\Rightarrow a^2\left(b-c\right)\le0\left(1\right)\)

\(b^2\left(c-b\right)=4.\frac{b}{2}.\frac{b}{2}.\left(c-b\right)\le4\left(\frac{\frac{b}{2}+\frac{b}{2}+c-b}{3}\right)^3=\frac{4c^3}{27}\)

\(\Rightarrow P\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2\left(1-\frac{23c}{27}\right)=\frac{23c}{54}.\frac{23c}{54}\left(1-\frac{23c}{27}\right).\frac{54^2}{23^2}\)

Đen đủi mất cái nik
2 tháng 11 2018 lúc 19:41

Tiếp

\(\le\left(\frac{\frac{23c}{54}+\frac{23c}{54}+1-\frac{23c}{27}}{3}\right)^3.\frac{54^2}{23^2}=\frac{1}{27}.\frac{54^2}{23^2}=\frac{108}{529}\)

Dấu bằng xảy ra\(\Leftrightarrow\hept{\begin{cases}a^2\left(b-c\right)=0\\\frac{b}{2}=c-b\\\frac{23c}{54}=1-\frac{23c}{27}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=0\\b=\frac{2}{3}c\\c=\frac{18}{23}\end{cases}}\)

huong quynh
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Lưu hương Lý
23 tháng 12 2015 lúc 10:34

ra nguyên những bài khó hiểu hết là chết liền

pham khanh huyen
23 tháng 12 2015 lúc 10:37

hoc lop may vay bai kho qua ai ma giai duoc