\(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\): \(\frac{1}{\sqrt{a}-\sqrt{b}}\)điều kiện: a>0; b>0; a\(\ne\)b
a/ Rút gọn B
b/ Tosnh B khi a = \(\sqrt{\left(2+\sqrt{3}\right)}\)và b = \(\sqrt{\left(2-\sqrt{3}\right)}\)
Giúp mình với ạ
1) Cho:
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right).\left(1-\frac{3}{\sqrt{a}}\right)\)
a. Tìm điều kiện để A có nghĩa
b. Rút gọn A
c. Tìm a để \(A>\frac{1}{2}\)
2) Cho:
\(B=\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{a}-b}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
a. Tìm điều kiện để B có nghĩa
b. Rút gọn B
\(A=\left(\frac{1}{\sqrt{a}-3}+\frac{1}{\sqrt{a}+3}\right)\left(1-\frac{3}{\sqrt{a}}\right)\) \(đk:a>0;a\ne9\)
\(=\frac{\sqrt{a}+3+\sqrt{a}-3}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}.\frac{\sqrt{a}-3}{\sqrt{a}}\)
\(=\frac{2\sqrt{a}}{\sqrt{a}\left(\sqrt{a}+3\right)}\)
\(=\frac{2}{\sqrt{a}+3}\)
\(đk:a>0;a\ne9\)
\(A>\frac{1}{2}=>\frac{2}{\sqrt{a}+3}>\frac{1}{2}\)
\(=>4>\sqrt{a}+3\)
\(< =>\sqrt{a}>1\)
\(< =>a=1\)
C/Minh đẳng thức:
a) \(\left(\frac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\frac{\sqrt{a}-2}{a-1}\right).\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{2}{a-1}\) (với a>0, b>0, a≠b)
b)\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}=-1\) (với a>0, b>0,a≠b)
c) \(\frac{2\sqrt{a}+3\sqrt{b}}{\sqrt{ab}+2\sqrt{a}-3\sqrt{b}-6}-\frac{6-\sqrt{ab}}{\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6}=\frac{a+9}{a-9}\) (với a≥0, b≥0,a≠9)
Cho D= \(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}+\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+ab}{1-ab}\right)\)
a/ Tìm điều kiện để D có nghĩa
b/ Tính d khi a=\(\frac{2}{2-\sqrt{3}}\)
c/ Tìm GTLN (giá trị lớn nhất) của D
1,Cho \(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
a,Tìm điều kiện để A có nghĩa
b,Khi A có nghĩa. Cmr: A không phụ thuộc vào a
ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\b>0\\a\ne b\end{matrix}\right.\)
\(A=\frac{a+b+2\sqrt{ab}-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}+\sqrt{b}\right)\)
\(A=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
Cho biểu thức \(A=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)
a ) Tìm điều kiện để A có nghĩa
b ) Rút gọn A
Lời giải:
a)
ĐK: \(a,b>0; a\neq b\)
b)
\(A=\frac{(\sqrt{a}+\sqrt{b})^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{\sqrt{ab}(\sqrt{a}+\sqrt{b})}{\sqrt{ab}}\)
\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-(\sqrt{a}+\sqrt{b})\)
\(=\frac{(\sqrt{a}-\sqrt{b})^2}{\sqrt{a}-\sqrt{b}}-(\sqrt{a}+\sqrt{b})=(\sqrt{a}-\sqrt{b})-(\sqrt{a}+\sqrt{b})=-2\sqrt{b}\)
\(ChoQ=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\)
a. Tìm điều kiện b,d để Q có ngjiax
b. Cm: Giá trị của Q không thuộc vào giá trị a
\(Q=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}=2\sqrt{b}\)
DK: \(a,b\ge0\)do \(Q=2\sqrt{b}\)nên Q ko phụ thuộc vào giá trị của a
Rút gọn biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
b) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)vớia,b>0\)
\(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}\cdot\frac{a\sqrt{a}+b\sqrt{b}}{a-\sqrt{ab}+b}\)
a) Tìm điều kiện xác định
b) Rút gọn
CÁC BẠN GIÚP MÌNH GIẢI NHÉ. THANKS
Rút gọn các biểu thức
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0)
b) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}\) (a,b ≥ 0; a ≠ b)
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\) với a,b > 0
a) \(\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}=\sqrt{ab}\)
b) Giống câu a ?
c) \(\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\frac{1}{a}\sqrt{4ab}+\frac{1}{b}\sqrt{\frac{b}{a}}\right):\left(1+\frac{2}{a}-\frac{1}{b}+\frac{1}{ab}\right)\)
\(=\left(\sqrt{ab}-\sqrt{\frac{a}{b}}+\sqrt{\frac{4b}{a}}+\sqrt{\frac{1}{ab}}\right):\left(\frac{ab+2b-a+1}{ab}\right)\)
\(=\frac{ab-a+2b+1}{\sqrt{ab}}\cdot\frac{ab}{ab+2b-a+1}\)
\(=\sqrt{ab}\)