Gọi S và P lần lượt là tổng và tích của hai nghiệm của phương trình \({x^2} + 5x - 10 = 0\). Khi đó giá trị của S và P là
A. S = 5; P = 10.
B. S = - 5; P = 10.
C. S = -5; P = -10.
D. S = 5; P = -10.
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1\)1=0
Với điều kiện của m để phương trình có 2 nghiệm x1, x2, gọi S và P lần lượt là tổng và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên
CHo phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
với điều kiện của m để pt có nghiêm, gọi S và P lần lượt là tổng và tích của 2 nghiệm pt. Tìm các giá trị của m để S và P là các số nguyên
Cho phương trình \(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
với m khác 1
Với điều kiện của m vừa tìm được ở câu a, gọi S và P lần lượt là tổng và tích của 2 nghiệm của phương trình. Tìmm các giá trị của m để S và P là các số nguyên
Cho phương trình \(\left(m-1\right)x^2-2\left(m-3\right)x+m+1\)1=0
m khác 1
Với điều kiện của m đẻ phương trìnhh có 2 nghiệm, gọi S, P lần lượt là tổng và tích của 2 nghiệm của pt. Tìm các giá trị của m để S và P là các số nguyên
Gọi x 1 là nghiệm của phương trình x + 1 3 – 1 = 3 – 5x + 3 x 2 + x 3 và x 2 là nghiệm của phương trình 2 x - 1 2 – 2 x 2 + x – 3 = 0. Giá trị S = x 1 + x 2 là:
A. 1/24
B. 7/3
C. 17/24
D. 1/3
Cho phương trình
\(\left(m-1\right)x^2-2\left(m-3\right)x+m+1=0\)0
m khác 1
a/ xác định mm để phương trình có 2 nghiệm x1. x2
b/ Tìm m để phương trình có nghiệm x1=0, khi đó tìm nghiệm còn lại
c/ Với điều kiện của m vừa tìm được ở câu a, tìm hệ thức liên hệ giữa x1, x2 độc lập đối với tham số m
d/ Với đièu kiện của mm vừa tìm được ở câu a, gọi S và P lần lượt là tông và tích của 2 nghiệm của phương trình. Tìm các giá trị của m để S và P là các số nguyên
Cho phương trình 2 x 3 x 2 - x + 2 - 7 x 3 x 2 + 5 x + 2 (1). Gọi S là tổng tất cả các nghiệm của phương trình (1). Giá trị của S là:
A. S = −11
B. S = 11
C. S = - 11 2
D. S = 11 2
Cho hai phương trình: x 2 - 2 m x + 1 = 0 và x 2 - 2 x + m = 0 . Gọi S là tập hợp các giá trị của mm để mỗi nghiệm của phương trình này là nghịch đảo của một nghiệm của phương trình kia. Tổng các phần tử của S gần nhất với số nào dưới đây?
A. -1
B. 0
C. 1
D. Một đáp số khác
Gọi x 1 , x 2 là nghiệm của phương trình x 2 - 2 m x + 1 = 0 . Khi đó x 1 + x 2 = 2 m x 1 . x 2 = 1
Gọi
x
3
,
x
4
là nghiệm của phương trình
x
2
-
2
m
x
+
1
=
0
. Khi đó
x
3
+
x
4
=
2
x
3
.
x
4
=
m
Ta có: x 1 = 1 x 3 x 2 = 1 x 4 ⇒ x 1 + x 2 = 1 x 3 + 1 x 4 x 1 . x 2 = 1 x 3 . x 4
⇒ x 1 + x 2 = x 3 + x 4 x 3 . x 4 x 1 . x 2 = 1 x 3 . x 4 ⇔ 2 m = 2 m 1 = 1 m ⇔ m = 1
Đáp án cần chọn là: C
Cho phương trình
(m2 +m +1) x2 -(m2 +2m+2) x-1=0
a) chứng tỏ rằng phương trình có hai nghiệm trái dấu.
b) gọi x1, x2 là hai nghiệm của phương trình trên. Tìm giá trị lớn nhất và nhỏ nhất của tổng: s= x1 +x2
a) Xét pt đã cho có \(a=m^2+m+1\); \(b=-\left(m^2+2m+2\right)\); \(c=-1\)
Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)
\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.
b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)
Nhận thấy \(m^2+m+1\ne0\) nên ta có:
\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)
pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)
Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)
Ta xét 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)
Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)
\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)
Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)
\(\Leftrightarrow m=0\)
Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)
Gọi S là tập hợp các giá trị nguyên dương của m để phương trình 2 cos x - 2 + m - 3 cos x 3 + cos 3 x + 6 sin 2 x + 9 cos x + m - 6 . 2 cos x - 2 = 2 cos x + 1 + 1 có nghiệm thực . Khi đó tổng của hai phần tử lớn nhất và nhỏ nhất của tập S bằng
A. 28
B. 21
C. 24
D. 4