Hai đoạn thẳng AD và BC cắt nhau ở O vs OA = OD; OB = OC. CM: AB = CD và AC = BD.
Cho hai tia OA, OB không đối nhau. Gọi C là điểm nằm giữa A và B. Gọi D là điểm không trùng O thuộc tia đối của tia OC. a) Tia OD có cắt đoạn thẳng AB hay không? b) Tia OB có cắt đoạn thẳng AD hay không? c) Tia OA có cắt đoạn thẳng BD hay không? d) Trong bốn tia OA, OB, OC, OD có tia nào nằm giữa hai tia còn lại hay không?
Cho đoạn thẳng AB và CD cắt nhau tại điểm O, sao cho OA=OB, OC= OD
Cmr:
a) Tứ giác ACBD là hình bình hành
b) AD = CB
c) Gọi M là trung điểm của AD, N là trung điểm của BC. Cmr MON thẳng hàng
a/
OA=OB (gt); OC=OD (gt) => ACBD là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
AD=CB (trong hình bình hành các cặp cạnh đối bằng nhau từng đôi 1)
c/
AB//BC (trong hbh các cặp cạnh đối // với nhau từng đôi 1)
=> AM//BN (1)
Ta có
AD=CB(cmt); MA=MD (gt); NB=NC (gt) => AM=BN (2)
Từ (1) và (2) => AMBN là hbh (tứ giác có cặp cạnh đối // và bằng nhau là hbh)
Nối M với N giả sử MN cắt AB tại O'
=> O'A=O'B (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => O' là trung điểm của AB
Mà O cũng là trung điểm của AB => O' trùng với O => M; O; N thẳng hàng
Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thẳng OA, OD và BC. Chứng minh rằng tam giác EFG là tam giác đều.
ΔAOB đều ⇒ BE là đường trung tuyến đồng thời là đường cao
⇒ BE ⊥ AO
⇒ ΔBEC vuông tại E
Mà EG là đường trung tuyến
⇒ (1)
ΔCOD đều ⇒ CF là đường trung tuyến đồng thời là đường cao
⇒ CF ⊥ OD
⇒ ΔBFC vuông tại F
Mà FG là đường trung tuyến
⇒ (2)
Hình thang ABCD (AB// CD) có: AC = AO + OC = OB + OD = BD
⇒ ABCD là hình thang cân
⇒ AD = BC.
ΔAOD có: AE = EO, FO = FD
⇒ EF là đường trung bình của ΔAOD
⇒
Mà AD = BC (cmt)
⇒ (3)
Từ (1); (2); (3) suy ra EF = FG = GE ⇒ ΔEFG đều (đpcm).
Hai đoạn thẳng AB và CD cắt nhau tại O , bik OA=OC , OB=OD , ACBD là hình j , vì sao ?
hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB=OD. Tứ giác ACBD là hình gì? Vì Sao?
Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA = OC, OB = OD. Tứ giác ACBD là hình gì ? Vì sao ?
hai đoạn thẳng AB và CD cắt nhau tại O .Biết rằng OA=OC,OB=OD. Từ giác ABCD là hình gì . Vì sao
Có : AB cắt Cd tại O
OA=OC,OB=OD
=> Tứ giác ABCD là hình thang
Muốn chứng minh hình thang cân chứng minh:
- Hai cạnh bên bằng nhau
- Hai đường chéo bằng nhau
cần chứng minh AB và CD là 2 đường chéo và 2 góc tương ứng kề đáy
ở đâu ra sẵn cho m chứng minh vậy quang anh nguyễn
) Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB và AC đến (O; R), ( với B, C là các tiếp điểm ). Kẻ đường kính BD của (O; R). Tia AO cắt dây BC tại H. a) Chứng minh OA là trung trực của đoạn thẳng BC và OA // CD b) AD cắt (O; R) tại E (E khác D). Chứng minh BED vuông và AC2 = AE . AD c) Chứng minh: 𝑂𝐻𝐷 ̂ = 𝑂𝐷𝐴
1. Hai đoạn thẳng AB và CD cắt nhau tại O. Biết rằng OA=OC, OB=OD. Tứ giác ACBD là hình gì? Vì sao?
hình thang cân
vì OA=OC
OD=OB
=>OA+OB=OC+OD
=>BA=CD
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.