Cho tam giác ABC có 3 góc nhọn, M là điểm nằm trong tam giác. Qua M vẽ MI\(\perp\)AB; MH\(\perp\)BC; MK\(\perp\)AC.
a) Chứng minh \(AI^2+BH^2+CK^2=BI^2+CH^2+KA^2\).
b) Xác định vị trí của M để \(AI^2+BH^2+CK^2\)bé nhất.
Cho tam giác ABC có 3 góc nhọn, điểm O nằm trong tam giác. Qua O vẽ đường thẳng song song với AB cắt AC tại M, BC tại N. Nêu mối quan hệ giữa góc MNC và ABC.
cho tam giác ABC có 3 góc nhọn. M là tia phân giác của BC. vẽ tia Ax đi qua điểm M. Trên tia Ax lấy điểm D sao cho M là trung điểm của AD. chứng minh
a)tam giác ABC= tam giác DMB
b)AB//CD
c)vẽ CF vuông góc với AB(F thuộc AB). chứng minh CF vuông góc với CD
d)CE vuông góc DB. CM góc FCE=Góc CDE
cho tam giác đều ABC có cạnh 3 cm
A/ Tính điện tích tam giác ABC
B/ Lấy M nằm trong tam giác ABC. Vẽ MI,MJ,MK lần lượt vuông góc với AB,AC,BC.Hãy tính MI+MJ+MK
1.Cho hình thang vuông ABCD (góc A bằng góc B bằng 90 độ). M là trung điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh góc AIB = góc DIC
2.Cho A nhọn tam giác ABC có góc A bằng 60 độ, trực tâm H. M là điểm đối xứng qua BC. Chứng minh tam giác BHC bằng tam giác BMC
3. Cho tam giác ABC cân tại A. M là trung điểm của BC. Trên AB lấy điểm D, trên AC lấy điểm E sao cho BD bằng CE
4. Cho tam giác nhọn ABC có góc A bằng 70 độ, điểm D thuộc BC. E là điểm đối xúng với D qua AB, F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB và AC, theo thứ tự tại M, N. Tính các góc của tam giác AEF ?
Các bạn vẽ hình cho mình với nha
cho tam giác ABC có 3 góc nhọn. gọi M là trung điểm của BC. vẽ tia Ax đi qua điểm M, trên tia Ax lấy điểm D sao cho M là trung điểm của AD
a) Chứng minh: tam giác AMC=tam giác DMB
b) Chứng minh :AB// CD
c) Vẽ CF vuông góc với AB (F thuộc AB) . Chứng minh :CF vuông góc CD
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó:ABDC là hình bình hành
Suy ra: AB//CD
1, Cho góc nhọn xOy, vẽ đường tròn tâm O bán kính 3 cm cắt Ox ở A, cắt Oy ở B. Vẽ đường tròn tâm A và tâm B cùng bán kính 4 cm cắt nhau tại điểm M nằm trong góc xOy. Chứng minh OM là tia phân giác của góc xOy
2, Cho tam giác ABC có B= AC, gọi M là điểm nằm trong tam giác sao cho MB= MC, H là trung điểm BC. Chứng minh:
a) AM là tia phân giác của góc BAC
b) Ba điểm A, M, H thẳng hàng
c) Đường thảng MH là đường trung trực của đoạn thẳng BC
3, Cho tam giác ABC có AB= AC, góc A= 40 độ, gọi M, N thứ tự là trung điểm AB, AC, biết BN= CM. Tính góc ABC
Cho tam giác ABC nhọn nội tiếp đường tròn (O) có đường cao AD cắt (O) tại điểm thứ hai là M. Vẽ ME vuông góc AC(E thuộc AC), đường thẳng ED cắt AB tại I.
a) c/m MDEC nt, MI vuông góc AB
b) c/m AB.AI=AE.AC
c) Gọi N là điểm đối xứng với M qua AB, F là điểm đối xứng M qua AC. NF cắt AD tại H.c/m H là trực tâm tam giác ABC
Mong mn giải giúp
cho tam giác ABC đều có cạnh=3cm. Gọi M là một điểm nằm tam giác ABC. Từ M kẻ MI,MJ,MK vuông góc với AB,AC,BC. Tính MI+MJ+MK=?
Ta tính diện tích tam giác ABC đều, cạnh bằng 3cm.
Kẻ AH vuông góc BC tại H.
Theo đó ta có tam giác ABC đều, AH là đường cao nên đồng thời là trung tuyến.
Vậy thì \(BH=HC=1,5cm\)
Áp dụng định lý Pi-ta-go cho tam giác vuông AHC, ta có \(AH^2+HC^2=AC^2\Rightarrow AH^2=3^2-1,5^2=6,75\):
\(\Rightarrow AH=\sqrt{6,75}\left(cm\right)\)
Vậy thì \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}.3.\sqrt{6,75}=\frac{3}{2}\sqrt{6,75}\left(cm^2\right)\) (1)
Lại có \(S_{ABC}=S_{MAB}+S_{MBC}+S_{MCA}=\frac{1}{2}AB.MI+\frac{1}{2}BC.MK+\frac{1}{2}AC.MJ\)
\(=\frac{1}{2}.3.\left(MI+MJ+MK\right)=\frac{3}{2}\left(MI+MJ+MK\right)\) (cm2) (2)
Từ (1) và (2) suy ra \(MI+MJ+MK=\sqrt{6,75}\left(cm\right)\)
1)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC.
2) Tam giác ABC có AB<AC. Gọi d là đường trung trực của BC, E là giao điểm của d với AC. Gọi K là một điểm bất kì thuộc d (K khác E). So sánh chu vi các tam giác AKB và AEB.
3) Cho điểm A nằm trong góc nhọn xOy. Vẽ điểm D đối xứng với A qua Ox. Vẽ điểm E đối xứng với A qua Oy. Gọi B và C theo thứ tự là giao điểm của DE với Ox và Oy. Chứng minh rằng tam giác ABC có chu vi nhỏ nhất trong các tam giác có một đỉnh là A, hai đỉnh kia nằm trên các tia Ox và Oy.
)Tam giác ABC có AB=30cm, AC=40cm. Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Qua A kẻ đường d vuông góc với BD. Gọi M là điểm bất kì thuộc đường thẳng d. Tìm giá trị nhỏ nhất của tổng BM+MC