Cho tam giác ABC cân ở A. Kẻ BE và CF lần lựơt vuông góc với AC và AB ( E thuộc AC ; F thuộc AB)
a) Chứng minh BE = CF và góc ABE = góc ACF
b) Gọi I là giao điểm của BE và CF, chứng minh IE = IF
c) Chứng minh AI là tia phân giác góc A
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng
b) Xét ΔEBC vuông tại E và ΔFCB vuông tại F có
BC chung
\(\widehat{ECB}=\widehat{FBC}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔEBC=ΔFCB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{EBC}=\widehat{FCB}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔBIC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF(Cạnh huyền-góc nhọn)
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB ( E thuộc Ac, F thuộc AB) a) cm tam giác ABE= tam giác ACF b) gọi I là giao điểm BE và CF. Chứng minh tam giác BIC cân c) so sánh FI và IC d) gọi M là trung điểm cảu BC. Chứng minh A,I,M thẳng hàng ( giúp mk vs mai mk nộp r)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
FB=EC
FC=EB
BC chung
DO đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔBIC cân tại I
d: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,M,I thẳng hàng
Cho tam giác ABC cân ở A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, Chứng minh rằng BE = CF và góc ABE = góc ACF
b, Gọi I là giao điểm BE và CF , chứng minh rằng IE =IF
c, Chứng minh AI là tia phân giác của góc A
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB
(E thuộc AC, F thuộc AB )
a/ Chứng minh: tam giác ABE = tam giác ACF .
b/ Gọi I là giao điểm của BE và CF. Chứng minh: tam giác BIC là tam giác cân.
c/ Gọi M là trung điểm của BC. Chứng minh: 3 điểm A, I, M thẳng hàng
Vẽ hình luôn cho mik nha, cảm ơn rất nhiều
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng
Câu 6: Cho tam giác ABC cân ở A. Kẻ BE và CF lần lượt vuông góc với AC và AB (E ∈ AC; F ∈ AB).
1) Chứng minh rằng BE = CF và
2) Gọi I là giao điểm của BE và CF, chứng minh rằng IE = IF
3) Chứng minh AI là tia phân giác của góc A.
Cho tam giác ABC cân tại A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a, chứng minh BE=CF và góc ABE = góc ACF
b, gọi I là giao điểm của BE và CF , chứng minh rằng IE=IF
c, chứng minh AI là tia phân giác của góc A
a) Tam giác ABE ( góc E=90 độ) và Tam giác ACF ( góc F=90 độ), có:
AB = AC ( gt )
Góc A chung
=> tam giác ... = tam giac ... ( cạnh huyền - góc nhọn)
=> BE = CF và góc ABE = góc ACF
b) Tam giác FCB ( góc F = 90 độ) và tam giác BEC ( góc E=90 độ), có:
BC chung
FC = EB ( c/m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> FB=EC
Tam giác ECI và tam giác FBI, có:
EC=FB (c/m trên)
góc E= góc F (=90 độ)
góc ACF = góc ABE (c/m trên)
=> tam giác ...= tam giác... (g-c-g)
c) Ta có: FA=AB - FB
EA=AC - EC
mà AB=AC; FB=EC
=> FA=EA
tam giác AIF(F=90 độ) tam giác AIE (E = 90 độ), có:
AI chung
FA=EA (c/ m trên)
=> tam giác... = tam giác... ( cạnh huyền-cạnh góc vuông)
=> góc BAI = góc CAI
hay AI là phân giác của góc A
Các bạn giúp mình bài này với . Bạn nào giỏi kẻ hình giùm mình , mình like cho
Bài 1 : Cho tam giác ABC cân ở A . Kẻ BE và CF lần lượt vuông góc với AC và AB ( E thuộc AC , F thuộc AB )
a) Chứng minh BE = CF và góc ABE = góc ACF
b) Gọi I là giao điểm của BE và CF , chứng minh IE = IF
c) Chứng minh AI là tia phân giác của góc A
Câu 2: Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB E AC (FAB)
a) Chứng minh ABE ACF.
b) Gọi I là giao điểm của BE và CF. Chứng minh BIC cân
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
FC=EB
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{FCB}=\widehat{EBC}\)
=>ΔIBC cân tại I
Cho tam giác ABC cân tại A (góc A nhọn). kẻ BE vuông AC, CF vuông AB (E thuộc AC, F thuộc AB).
a, Chứng minh tam giác ABC = tam giác ACF.
b, gọi M là giao điểm của BE và CF, chứng minh AM là tia phân giác góc BAC
Giúp em với ạ em đg cần gấp. Cảm mơn mn trc
a: Xet ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Xét ΔAFM vuông tại F và ΔAEM vuông tại E có
AM chung
AF=AE
Do đó: ΔAFM=ΔAEM
Suy ra: \(\widehat{BAM}=\widehat{CAM}\)
hay AM là tia phân giác của góc BAC