cho tam giac ABC co goc A = 90 do va BC = 2 * AB ; E la trung diem cua BC . tia phan giac cua goc B cat canh AC o D
A ) chung minh DB la phan giac cua goc ADE
B ) chung minh BD = DC
C) tinh goc B , goc C cua tam giac ABC
cau 1 cho tam giac can abc co ab=ac=17 va bc=30 ve ra ngoai tam giac abc tam giac bcd voi cbd=90 do va cd song song voi ab tinh do dai bd
cau 2 cho tam giac abc co goc b =70 do goc c =40 do cac duong cao bd va ce cat nhau tai h goi i la trung diem cua ah m la giao cua tia phan giac goc eid voi bc tinh goc imd
cho tam giac abc co goc a bang 90 do. bd la phan giac cua goc b ve de vuong goc bc .goi f la giao diem cua ab va de
a, chung mijh tam giac abd = tam giac ebd va duong trung truc cua ae
b, chung minh tam giac dcf can
c, khi tam giac abc co goc b bang 60 do , c = 30 do va bc = 12 cm . tinh do dai dc
cho tam giac abc co goc a nho hon 90 do cho tam giac abc co 2 doan thang ad vuong goc va bang ab,ae vuong goc va bang ac
a, cmr dc=be va dc vuong goc voi be
b, goi n la trung diem cua de.tren tia doi cua tia na lay m sao cho na=mn . chung minh ab=me va tam giac abc=tam giac ema
bai 2: cho tam giac ABC co goc A=90 do.Goi M la trung diem cua AC.tren tia BM lay diem N sao cho M la trung diem cua doan BN.CMR:a,CN vuong goc AC va CN=AB b,AN=BC va AN song song BC
bai 3:cho tam giac ABC co goc A=90 do va AB nho hon AC.tren canh AC lay diem D sao cho AD=AB.tren tia doi cua tia AB lay diem E sao cho AE=AC.CMR:a)DE song song BC b)DE vuong goc BC c)biet 4.B=5.C.tinh goc AED
Bài 2:
a) Xét 2 \(\Delta\) \(ABM\) và \(CNM\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)
\(BM=NM\) (vì M là trung điểm của \(BN\))
=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)
=> \(AB=CN\) (2 cạnh tương ứng)
=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)
Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(90^0+\widehat{NCM}=180^0\)
=> \(\widehat{NCM}=180^0-90^0\)
=> \(\widehat{NCM}=90^0.\)
=> \(\widehat{BAM}=\widehat{NCM}=90^0\)
=> \(CN\perp AB.\)
b) Xét 2 \(\Delta\) \(AMN\) và \(CMB\) có:
\(AM=CM\) (như ở trên)
\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MN=MB\) (như ở trên)
=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)
=> \(AN=BC\) (2 cạnh tương ứng)
=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AN\) // \(BC.\)
Chúc bạn học tốt!
Cho tam giac ABC co goc A =90 do ,AB=AC .Goi K la trung diem cua BC a,cmr:tam giac AKB= tam giac AKC va AK vuong goc BC b,tu C ve duong thang vuong goc voiBC cat AB tai M goi N la trung diem cua CM cmr CM//AK va KN =0.5BM
cho tam giac ABC co goc A<90 do ve ra ngoaitam giac do hai doan thang AD vuong goc va bang AB, AE vuong goc va bang AC
a, chung minh DC vuong goc va bang BE
b, goi N la trung diem cua DE.Tren tia doi cua NA lay M sao cho NA=NM
chung minh AB=ME va tam giac ABC=tam giac EMA
c, chung minh MA vuong goc voi BC
giup mk cau c thoi cung dc mk dg can gap nha
tam giac ABC co A=90 do , AB vuong goc voi BC AB = 6 , AC = 8 a) tinh BC , AH , goc B , goc C b) HE vuong goc voi AB , HF vuong goc voi AC , xđ dạng tứ giac AEHF . tinh SAEHF c) ve phan giac AD tinh BD va SAHD d) AE.AH = AF. AC
cho tam giac abc co goc c+90 do=goca ve ah vuong goc bc duong thang vuong goc voi ab tai a cat bc tai d goi m la giao diem cua cac tia phan giac goc bah va adh chung minh goc bah=2c chung minh mavuong goc ac
Cho tam giac ABC co goc A lon hon 90 do. Ke DA vuong goc voi AB va DA=AB ( tia AD nam giua 2 tia AB,AC).Ke AE vuong goc voi AC va AE=AC ( tia AE nam giua 2 tia AB,AC). Ke AH vuong goc voi BC va keo dai cat De tai M. CM MD=ME