Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 7 2023 lúc 18:48

a: BD=căn 8^2+6^2=10cm

Xét ΔBCD vuông tại C có sin DBC=CD/BD=3/5

=>góc DBC=37 độ

=>góc BDC=53 độ

b: CH=8*6/10=4,8cm

BH=BC^2/BD=64/10=6,4cm

 

Đỗ Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 7 2023 lúc 20:39

a: Sửa đề: AD=6cm

BC=AD=6cm

CD=AB=8cm

BD=căn 6^2+8^2=10cm

Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5

nên góc DBC=53 độ

=>góc BDC=37 độ

b: CH=6*8/10=4,8cm

BH=BC^2/BD=6^2/10=3,6cm

 

Thao Nhi Tran Le
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 13:07

a) Áp dụng định lí Pytago vào ΔAMC vuông tại A, ta được:

\(MC^2=AC^2+AM^2\)

\(\Leftrightarrow AC^2=20^2-12^2=256\)

hay AC=16(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAMC vuông tại A có AD là đường cao ứng với cạnh huyền MC, ta được:

\(\left\{{}\begin{matrix}AD\cdot MC=AM\cdot AC\\AM^2=MD\cdot MC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD\cdot20=16\cdot12=192\\MD\cdot20=12^2=144\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}AD=9.6\left(cm\right)\\MD=7.2\left(cm\right)\end{matrix}\right.\)

Ta có: MD+DC=MC(D nằm giữa M và C)

nên DC=MC-MD=20-7,2=12,8(cm)

hay AB=12,8(cm)

Ta có: AD=BC(ABCD là hình chữ nhật)

nên AD=9,6(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC, ta được:

\(BH\cdot AC=AB\cdot BC\)

\(\Leftrightarrow BH\cdot16=9.6\cdot12.8=122.88\)

hay BH=7,68(cm)

Nguyễn Trần Thanh Thảo
Xem chi tiết
Nguyễn Thị Hoài Trân
Xem chi tiết
Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 9:34

1.

\(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\left(pytago\right)\)

Áp dụng HTL tam giác 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{3,2\cdot1,8}=5,76\left(cm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
13 tháng 9 2021 lúc 9:36

2.

Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC=HC\\AB^2=BH\cdot BC=BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=4\left(cm\right)\\AB=\sqrt{HC+HB}=\sqrt{4+1}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)

\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-5}=2\sqrt{5}\left(cm\right)\)

Vậy \(AB=\sqrt{5}\left(cm\right);BC=5\left(cm\right);AC=2\sqrt{5}\left(cm\right)\)

Hang Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 10 2023 lúc 12:31

a: ΔABC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(AC^2=4^2+3^2=25\)

=>AC=5(cm)

Xét ΔBAC vuông tại B có BH là đường cao

nên \(BH\cdot AC=BA\cdot BC\)

=>BH*5=3*4=12

=>BH=2,4(cm)

Xét ΔBAC vuông tại B có

\(sinBAC=\dfrac{BC}{AC}=\dfrac{3}{5}\)

=>\(\widehat{BAC}\simeq37^0\)

b: Xét ΔABE vuông tại A có AH là đường cao

nên \(BH\cdot BE=BA^2\)(1)

Xét ΔABC vuông tại B có BH là đường cao

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)

c: Xét ΔBHC vuông tại H và ΔBFE vuông tại F có

\(\widehat{HBC}\) chung

Do đó: ΔBHC\(\sim\)ΔBFE

=>\(\dfrac{BH}{BF}=\dfrac{BC}{BE}\)

=>\(\dfrac{BH}{BC}=\dfrac{BF}{BE}\)

Xét ΔBHF và ΔBCE có

BH/BC=BF/BE

\(\widehat{HBF}\) chung

Do đó: ΔBHF\(\sim\)ΔBCE

 

Trần Chí Công
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 20:16

a: Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

góc ABH chung

=>ΔAHB đồng dạng vơi ΔDAB

b: \(BD=\sqrt{12^2+16^2}=20\left(cm\right)\)

BH=12^2/20=7,2cm

AH=12*16/20=9,6cm

Huy M-TP
Xem chi tiết
Tran Thi Thuy Trang
16 tháng 11 2018 lúc 20:34

a) EF là đường trung bình của tam giác ABH => EF//AB; EF=1/2AB (1)

  Có G là trung điểm của DC => GC//AB(DC//AB); GC=1/2AB(DC=AB) (2)

 Từ (1)$(2) => EF//GC; EF=GC => Tứ giác EFCG là hình bình hành.

b) Xét tam giác EBH và tam giác CBH có:BH là cạnh chung

                                                            EHB=CHB=90 (gt)

                                                            EH=EC(H là trung điểm của EC)

     Vậy tam giác EBH=tam giac CBH (cgv-cgv)

          =>BEH=BCH ; EBH=CBH

Lại có:BEH+EBH+BCH+CBH=180 =>BEH=EBH=BCH=CBH=180/4=45 (3)

Co BCE+ECG=BCG

Ma BCG=90(ABCD là hcn); BCE=45(cmt)

    => ECG=45

Xét tam giác EGC có:EGC+GEC+ECG=180

                          => EGC=180-(GEC+ECG)

                                     =180-(90+45)=45 (4)

Tu (3)$(4) => BEG=90

c)Tu CM

Nguyễn Thanh Trường
Xem chi tiết