Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Menna Brian
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 20:56

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

Nguyễn Thị Tú Phương
Xem chi tiết
Thanh Hoàng Thanh
1 tháng 1 2022 lúc 22:20

1) Xét tam giác DEF có:

+ A là trung điểm của DE (gt).

+ B là trung điểm của DF (gt).

\(\Rightarrow\) AB là đường trung bình của tam giác DEF.

\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).

2) Xét tam giác DEF vuông tại D có:

DA là đường trung tuyến (A là trung điểm của EF).

\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).

3) Xét tam giác DEF có:

+ DB là đường trung tuyến (B là trung điểm của EF).

+ DB = \(\dfrac{1}{2}\) EF (gt).

\(\Rightarrow\) Tam giác DEF vuông tại D.

28-9A14- Kim Nhung
Xem chi tiết
Sùnglan
Xem chi tiết
Nguyễn Đắc Linh
20 tháng 3 2023 lúc 17:27

Để tìm 3 cặp tam giác đồng dạng với tam giác DEF, ta có thể sử dụng các định lý đồng dạng trong tam giác.

Tam giác DHE đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc D của tam giác DHE (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE) Góc E của tam giác DEF bằng góc H của tam giác DHE (do HE là đường cao của tam giác DHE, nên góc HED vuông góc với DE) Từ hai quan sát trên, ta suy ra tam giác DHE đồng dạng với tam giác DEF theo định lý góc-góc-góc. Tam giác EFD đồng dạng với tam giác DEF Ta có: Tam giác EFD cũng là tam giác vuông tại D, nên góc D bằng góc D của tam giác DEF. Từ đó, ta có hai góc D giống nhau ở hai tam giác, còn lại là góc E và góc F, ta có:

EF/DF = (DE + DF)/DF = (6+8)/8 = 7/4

ED/DF = DE/DF = 6/8 = 3/4

Từ hai tỉ lệ này, ta suy ra tam giác EFD đồng dạng với tam giác DEF theo định lý góc - cân - góc. Tam giác EHD đồng dạng với tam giác DEF Ta có: Góc D của tam giác DEF bằng góc H của tam giác EHD (do DH là đường cao của tam giác DEF, nên góc DHS vuông góc với DE; HE là đường cao của tam giác EHD, nên góc HES vuông góc với ED; do đó ta có góc H bằng góc D) Góc E của tam giác DEF bằng góc E của tam giác EHD (do cả hai tam giác đều chứa cạnh ED) Từ hai quan sát trên, ta suy ra tam giác EHD đồng dạng với tam giác DEF theo định lý góc-góc-góc.

Vậy ta đã tìm được 3 cặp tam giác đồng dạng với tam giác DEF, đó là: DHE, EFD, EHD.

Lê Thu Thảo
Xem chi tiết
Lê Thu Thảo
Xem chi tiết
Hiền Hòa
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 23:30

Bài 1: 

\(CH=24\cdot\dfrac{3}{8}=9\left(cm\right)\)

\(DH=15\left(cm\right)\)

\(OC=\sqrt{9\cdot24}=6\sqrt{6}\left(cm\right)\)

\(OD=\sqrt{24^2-216}=6\sqrt{10}\left(cm\right)\)

\(OH=3\sqrt{15}\left(cm\right)\)

Helloo
Xem chi tiết
Tiến Nguyễn
2 tháng 4 2022 lúc 10:08

C

Thám tử Trung học Kudo S...
2 tháng 4 2022 lúc 10:09

A

(っ◔◡◔)っ ♥ Kiera ♥
2 tháng 4 2022 lúc 10:09

A

Vũ Văn Thắng
Xem chi tiết
Huỳnh Quang Sang
4 tháng 3 2021 lúc 10:25

Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)

=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)

=> \(DF=\sqrt{144}=12\left(cm\right)\)

Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh

Xét tam giác ABC và tam giác DEF ta có :

\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)

\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)

\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)

=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)

=> Tam giác ABC đồng dạng tam giác DEF

Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được

Khách vãng lai đã xóa
co
4 tháng 3 2021 lúc 10:25

ko b oi

Khách vãng lai đã xóa
MAI VŨ BẢO CHÂU
4 tháng 3 2021 lúc 15:22

hai tam giác ko thể đồng dạng bạn nhé

Khách vãng lai đã xóa