Cho tam giác ABC có góc A =60 độ, các phân giác BM ; CN
CM: BN + CM = BC
Cho tam giác ABC có góc A = 60 độ trên BC lấy M sao cho BM = 2MC và góc AMB =60 độ. tính các góc tam giác ABC
Cho tam giác ABC có góc A = 60 độ, các tia phân giác BM và CN giao nhau tại I. Biết rằng BC = 4cm. tính tổng BM + CN.
Cho tam giác ABC, BC=4cm, góc A=60 độ,vẽ các tia phân giác BM và CN. Tính tổng BN+CM
Cho tam giác ABC có góc A = 60 độ. Các tia phân giác BM và CN cắt nhau tại I. Biết BC = 4cm. Tính BN + CM
Cho tam giác ABC có góc A=60 độ; BM,CN lần lượt là tia phân giác của góc ABC và ACB; BM và CN cắt nhau tại I.
a) tính góc BIN
b) CMR: góc INM= góc IMN
cho tam giác ABC có góc A=60 độ.2 tia phân giác BM và CN cắt nhau tại I biết BC=4cm. Tính tổng BM+CN
Cho tam giác ABC có 2 đcao BM và CN
a,CMR:tam giác ABM∼tam giác ACN
b,CM:góc AMN=góc ABC
c,Cho phân giác AD,A=60 độ .Gọi I là giao điểm AD và MN.Tính \(\dfrac{AI}{AD}\)
a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM\(\sim\)ΔACN
b: Ta có: ΔABM\(\sim\)ΔACN
nên AB/AC=AM/AN
hay AM/AB=AN/AC
Xét ΔAMN và ΔABC có
AM/AB=AN/AC
\(\widehat{MAN}\) chung
Do đó: ΔAMN\(\sim\)ΔABC
cho tam giác ABC có góc A= 80 ĐỘ, GÓC B = 60 độ
a) so sánh các cạnh của tam giác ABC
b) Trên c lấy điểm M sao cho BM= BA. Tia phân giác góc B cắt AC tại D
CM: tam giác BAD= tam giác BMd
C) tia MD cắt tia BA tại H, chứng minh tam giác DHC c ân
d) CM BD>AM và tính số do góc DHC
d)
Xét tam giác AMB có ABM<AMB(60 độ < 80 độ)
=>AM<AB (1)
Xét tam giác DAB có ADB<DAB( 70 độ<80 đô)
=> AB<BD (2)
Từ (1) và (2)
=> AM<BD ( đpcm)
Còn vẽ hình bạn tự vẽ nha, cũng không khó lắm đâu, vẽ trên máy tính thì khó thôi)
a) C=180-80-60=40( độ)
Tam giác ABC có C<B<A
=> AB<AC<BC
b) Xét tam giác BAD và tam giác BMD có
BA=BM( giả thiết)
DBA=DBM ( vì tia BD là phân giác của góc ABC)
Cạnh BD cung
=> \(\Delta BAD=\Delta BMD\left(c.g.c\right)\)
c) Có \(\Delta BAD=\Delta BMD\)( theo câu b)
=>DA=DM ( 2 cạnh tương ứng)
Góc DAB= gócDMB ( 2 góc tương ứng) ( Xin OLM cho bổ sung vào hệ thống kí hiệu góc để viết cho tiện)
=> Góc DMC= góc DAH ( 2 góc kề bù của 2 góc bằng nhau)
Xét tam giác DAH và tam giác DMC có
góc CDM= góc HAD ( 2 góc đối đỉnh)
DA=DM
DAH=DMC
=>\(\Delta DAH=\Delta DMC\left(g.c.g\right)\)
=> DH=DC ( 2 cạnh tương ứng)
=> tam giác DHC cân tại D
Vì BD là phân giác của góc ABC nên góc DBA=góc DBM=60:2=30 độ
Có ADB=180-80-30=70 độ
MDB=180-80-30=70 độ ( vì góc DMB= góc DAB= 80 độ)
=> góc MDA=MDB+ADB=70+70=140 độ
Ta có CDH=MDA=140 độ ( 2 góc đối đỉnh)
=> DHC = \(\frac{180-140}{2}=20\) độ
cho tam giác ABC có góc A =60 độ .Vẽ phân giác BM và CN cắt nhau tại O
a) Tính góc BOC
b) vẽ phân gÁC OD của góc BOC .chứng minh ON=OD
c) chứng minh tam giác MON cân