Cho tam giác ABC, các đường cao AD; BE; CF cắt nahu tại H
1) CMR: AE. AC = AF. AB
2) CMR: tam giác BFD đồng dạng với tam giác BCA
Cho tam giác ABC ; đường cao AH , vẽ AD, CK lần lượt là các đường phân giác của tam giác ABH; ABC; AD cắt CK tại E . a) chứng minh rằng tam giác ACD
Cho tam giác ABC có đường cao AD. Đường thẳng song song với BC, cắt AB,AC và đường cao AD theo thứ tự tại các điểm B',C',D'
a) chứng minh AD'/AD=B'C'/BC
b) Áp dụng: Cho biết AD'=1/3AD và diện tích tam giác ABC là 73,5cm^2. Tính diện tích tam giác AB'C'
a) Ta có: d // BC (gt)
\(\Rightarrow\)B'C' // BC, theo hệ quả của định lí Ta-lét ta có:
\(\frac{AB'}{AB}=\frac{B'C'}{BC}\)(Trong \(\Delta AB'C'\)và \(\Delta ABC\)) (1)
Và \(\frac{AB'}{AB}=\frac{AD'}{AD}\)(Trong \(\Delta AB'D'\)và \(\Delta ABD\)) (2)
Từ (1), (2) \(\Rightarrow\)\(\frac{B'C'}{BC}=\frac{AD'}{AD}\left(3\right)\)
b) Ta có: AD' = \(\frac{1}{3}\)AD (gt) (4) \(\Leftrightarrow\frac{AD'}{AD}=\frac{1}{3}\left(5\right)\)
Từ (3), (5) \(\Rightarrow\frac{B'C'}{BC}=\frac{1}{3}\Leftrightarrow B'C'=\frac{1}{3}BC\)\(\left(6\right)\)
Tích của cạnh đáy BC và đuuờng cao AD là:
\(S_{ABC}=\frac{1}{2}AD.BC\)
\(\Leftrightarrow\)73,5 \(=\frac{1}{2}AD.BC\)
\(\Leftrightarrow\)\(AD.BC=\)73,5 :\(\frac{1}{2}\)
\(\Leftrightarrow\)\(AD.BC=\)147 \(\left(7\right)\)
Diện tích tam giác AB'C' là:
\(S_{AB'C'}=\frac{1}{2}AD'.B'C'\)
Từ (4), (6) \(\Rightarrow S_{AB'C'}\)=\(\frac{1}{2}.(\frac{1}{3}.AD.\frac{1}{3}BC)\)
\(\Leftrightarrow S_{AB'C'}=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.AD.BC\)
Từ (7) \(\Rightarrow S_{AB'C'}\)\(=\frac{1}{2}.\frac{1}{3}.\frac{1}{3}.147\)
\(=\frac{49}{6}\)
Vậy \(S_{AB'C'}=\frac{49}{6}cm^2\)
Cho tam giác ABC cân tại A, đường cao AD, phân giác BE. Tính các góc của tam giác ABC
Đặt DH = x. Trên tia đối của tia DA em lấy điểm E sao cho DE = DH = x
=> tam giác BEH cân tại B => ^DBE = ^DBH (1) và BE = BH = 30
Mặt khác : ^ABD = ^ACD = ^BHD (2) ( góc có cạnh tương ứng vuông góc AC _|_ BH; CD _|_ DH)
(1) + (2) : ^ABD + ^DBE = ^BHD + ^DBH = 90o => tam giác ABE vuông tại B
Trong tg ABE vuông tại B đường cao BD nên ta có hệ thức:
DE.AE = BE²
<=> DE(AH + DH + DE) = BE²
<=> x(2x + 14) = 900
<=> 2x² + 14x - 900 = 0
Giải ra x = 18 ( loại nghiệm x = - 25)
=> AD = AH + DH = 14 + 18 = 32
cho tam giác ABC cân tại A đường cao AD phân giác BE. Tính các góc của tam giác biết BK= hai AD
Cho tam giác ABC vuông tại A , đường cao AH , biết HB = 3,6cmvaf AC = 8cm . Tính diện tích các tam giác ABC , AHB , AHC . Kẻ các đường trung tuyến AM và đường phân giác AD . Tính diện tích tam giác AHM và tam giác AHD
cho tam giác ABC ko có góc tù có AB=6cm,AC=8cm.BC=10cm
a)tính các góc của tam giác ABC
b) tính đường cao kẻ từ B của tam giác ABC
c) gọi AD là đường phân giác của tam giác ABC .tính AD
Ai đó giúp mk vs !!!
1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng 1.Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H. Gọi I và K lần lượt là hình chiếu của điểm D trên các đường thẳng BE và CF. Chứng minh rằng b.IK //EF c. Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC b.IK //EF
b: góc HID+góc HKD=180 độ
=>HIDK nội tiếp
=>góc HIK=góc HDK
=>góc HIK=góc HCB
=>góc HIK=góc HEF
=>EF//IK
Bài 1. Cho tam giác ABC cân tại A, đường cao AD, phân giác của góc B cắt AC tại E sao cho AE
= 2 AD. Tính các góc của tam giác ABC?
Cho tam giác ABC cân tại B có ∠B = 112o. Kẻ đường cao AH và đường phân giác AD của tam giác đó. Tính các góc của tam giác AHD.
+) Ta có: ∠(ABH) + ∠(ABC) = 180º ( hai góc kề bù)
Suy ra: ∠(ABH) = 180º - ∠(ABC) = 180º − 112º = 68º
+) Xét tam giác AHB vuông tại H ta có:
∠A1+ ∠(ABH) = 90º ( tính chất tam giác vuông)
Suy ra: ∠A1= 90º − ∠(ABH) = 90º − 68º = 22º
+) Tam giác ABC cân tại B nên ∠(BAC) = ∠(ACB)
Lại có ∠(ABC) = 112º và ∠(BAC)+ ∠(ACB) + ∠(ABC) = 180º nên
∠(BAC) = (180º − 112º) : 2 = 34o
+) Do AD là tia phân giác của góc BAC nên
+ Từ đó
∠(HAD) = ∠A1 + ∠A2= 22º + 17º = 39º.
Tam giác HAD vuông tại H nên: ∠(HDA)+ ∠(HAD) = 90º
Suy ra: ∠(HDA) = 90º − ∠(HAD) = 90º − 39º = 51º