Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phanthi minh chau
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2019 lúc 14:12

nguyen hai bang
Xem chi tiết
Đợi anh khô nước mắt
3 tháng 3 2016 lúc 20:33

A B C E F D

hình chỉ minh họa thôi nhé mk sẽ giải cho 

Nguyễn Văn Hiếu
3 tháng 3 2016 lúc 20:50

vì AD=BE=CF nên AD,BE,CF là đường cao là trung trực là tung tuyến phân giác mà 3 đường cao đi qua 1 điểm , điểm này cách đều D,E,F nên tam giác DEF là tam giac đều 

Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 11:09

AB=AC=BC

AD=BE=CF
=>BD=EC=AF

Xet ΔADF và ΔBED có

AD=BE

góc A=góc B

AF=BD

=>ΔADF=ΔBED

=>DF=ED

Xét ΔADF và ΔCFE có

AD=CF
góc A=góc C

AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED

=>ΔDEF đều

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 11 2017 lúc 7:51

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AB = AD +DB (1)

BC = BE + EC (2)

AC = AF + FC (3)

AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)

AD = BE = CF ( giả thiết) (5)

Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF

Xét ΔADF và ΔBED, ta có:

AD = BE (gt)

∠A =∠B =60o (vì tam giác ABC đều)

AF = BD (chứng minh trên)

suy ra: ΔADF= ΔBED (c.g.c)

⇒ DF=ED (hai cạnh tương ứng) (6)

Xét ΔADF và ΔCFE, ta có:

AD = CF (gt)

∠A =∠C =60o (vì tam giác ABC đều)

AF = CE (chứng minh trên)

suy ra: ΔADF= ΔCFE (c.g.c)

Nên: DF = FE (hai cạnh tương ứng) (7)

Từ (6) và (7) suy ra: DF = ED = FE

Vậy tam giác DFE đều

Phạm Trịnh Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 2 2023 lúc 11:09

AB=AC=BC

AD=BE=CF
=>BD=EC=AF

Xet ΔADF và ΔBED có

AD=BE

góc A=góc B

AF=BD

=>ΔADF=ΔBED

=>DF=ED

Xét ΔADF và ΔCFE có

AD=CF
góc A=góc C

AF=CE
=>ΔADF=ΔCFE
=>DF=FE=ED

=>ΔDEF đều

Huỳnh Thị Thu Thảo
Xem chi tiết
Phan Thanh Tịnh
31 tháng 8 2016 lúc 11:53

A B C D E F

\(\Delta ABC\)đều (gt) nên AB = BC = AC ; góc A = góc B = góc C = 600 mà AD = BE = CF (gt)

=> AB - AD = BC - BE = AC - CF <=> BD = CE = AF

\(\Delta ADF,\Delta BED\)có AD = BE (gt) ; góc DAF = góc EBD = 600 (cmt) ; AF = BD (cmt) nên\(\Delta ADF=\Delta BED\left(c.g.c\right)\)

=> DF = ED (2 cạnh tương ứng) (1)

\(\Delta ADF,\Delta CFE\)có AD = CF (gt) ; góc DAF = góc FCE = 600 (cmt) ; AF = CE (cmt) nên\(\Delta ADF=\Delta CFE\left(c.g.c\right)\)

=> DF = FE (2 cạnh tương ứng) (2).Từ (1) và (2),ta có DF = FE = ED.Vậy\(\Delta DEF\)đều

trung tín
6 tháng 4 2020 lúc 10:28

. Cho tam giác ABC, Các tia phân giác của các góc B và C cắt nhau tại I Qua I kẻ đường thẳng song song với BC cắt AB tại M và AC tại N. Chứng minh rằng MN = BM + CN

Khách vãng lai đã xóa
Nguyễn Phương Ngân
Xem chi tiết
okok
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 22:46

Xét ΔBDE và ΔAFD có

BE=AD

góc EBD=góc DAF

AF=BD

=>ΔBDE=ΔAFD

=>DE=FD

Xét ΔBDE và ΔCEF có

BE=CF

góc DBE=góc ECF

BD=CE

=>ΔBDE=ΔCEF

=>DE=EF=FD

=>ΔDEF đều

♥ Don
Xem chi tiết
Kiệt Nguyễn
26 tháng 10 2019 lúc 20:25

Xét \(\Delta EBD\)và \(\Delta FCE\)có:

          EC = DB (Vì \(\hept{\begin{cases}AB=BC\\AD=EB\end{cases}}\))

         \(\widehat{EBD}=\widehat{FCE}\)(Cùng là 2 góc ngoài của 1 tam giác đều)

         EB = FC (gt)

Suy ra \(\Delta EBD\)\(=\Delta FCE\left(c-g-c\right)\)

\(\Rightarrow DE=EF\)(1)

Chứng minh tương tự: \(\Delta EBD\)\(=\Delta DAF\left(c-g-c\right)\)

\(\Rightarrow DE=FD\)(2)

Từ (1) và (2) suy ra DE = EF = FD

Vậy tam giác DEF đều (đpcm)

Khách vãng lai đã xóa