cho tam giác ABC(Â=90o); BD là phân giác cưa góc B (D thuộc AC). Trên tia BC lấy điểm E sao cho BA=BE
a) cm DE vuông góc với BC
b) BD là đường trung trực của AE
c) kẻ AH vuông với BC. So sánh EH và EC
cho tam giác ABC có Â>90o , điểm M nằm giữa A và C. Chứng minh BC>BM>BA
Cho tam giác ABC có Â = 90o, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D
a) Chứng minh : ABD EBD
b) Tính số đo BED
Cho tam giác ABC có Â=90o. Kẻ AH vuông góc với BC (H thuộc BC). Các tia phân giác của các góc BAH và C cắt nhau ở K.Chứng tỏ AK vuông góc với CK (Vẽ hình với nha^^)
Bài 4. Cho tam giác ABC cân tại A (Â < 90o). Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a)Chứng minh tam giác ABD = tâm giác ACE để suy ra CE = BD
b)Chứng minh AH là phân giác của góc BAC.
c)Chứng minh DE // BC
d)Trên tia CE lấy điểm M sao cho E là trung điểm của HM. Trên tia BD lấy điểm N sao cho D là trung điểm của HN. Chứng minh AM = AH và tam giác AMN cân.
e)Tam giác ABC cho trước phải có điều kiện gì để tam giác AMN là tam giác đều.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra; BD=CE
b: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
AE=AD
Do đó: ΔAEH=ΔADH
Suy ra: \(\widehat{EAH}=\widehat{DAH}\)
hay AH là tia phân giác của góc BAC
c: Xét ΔABC cso AE/AB=AD/AC
nên DE//BC
cho tam giác ABC có Â = 120 độ. Trên tia phân giác của Â, lấy D sao cho AD=AB+AC. Chứng minh rằng tam giác BCD đều
cho tam giác ABC có Â = 120 độ. Trên tia phân giác của Â, lấy D sao cho AD=AB+AC. Chứng minh rằng tam giác BCD đều
Lấy sao cho mà nên
cân có nên là tam giác đều suy ra
Thấy (góc ngoài tại đỉnh của tam giác ) nên
Suy ra (hai góc tương ứng bằng nhau) và (hai cạnh tương ứng)
Lại có nên
cân tại có nên nó là tam giác đều.
Đây nhé!
Cho mình hỏi tại sao AC=AB+AC nên AE=AC? Tối nay mình pải nộp bài r
Cho tam giác ABC có ∠ A = 90 o , ∠ B = 30 o . Cạnh lớn nhất của tam giác là:
A. Cạnh AB
B. Cạnh BC.
C. Cạnh CA
D. AB và CA
Tam giác ABC là tam giác vuông nên góc A là góc lớn nhất, suy ra cạnh lớn nhất là BC. Chọn B
Cho △ A B C có B ^ + C ^ = 90 o . Khi đó tam giác ABC là:
A. Tam giác đều
B. Tam giác vuông
C. Tam giác cân
D. Tam giác vuông cân
Cho ABC ( Â=90o) có BD là tia phân giác góc B ( D ∈ AC ). Trên tia BC lấy điểm E sao cho BA = BE
a) Chứng minh : DE ⊥ BE
b) Chứng minh: BD là đường trung trực của AE
c) Kẻ AH ⊥ BC . So sánh EH và EC
a) Xét ΔBAD và ΔBED có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBAD=ΔBED(c-g-c)
Suy ra: \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
hay DE⊥BE(Đpcm)
b) Ta có: ΔBAD=ΔBED(Cmt)
nên AD=ED(Hai cạnh tương ứng)
Ta có: BA=BE(gt)
nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DA=DE(cmt)
nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(Đpcm)
cho tam giác abc có Â=90 độ và ab=ac ta có tam giác abc là tam giác ?
Do AB=AC(gt)
=> Tg ABC cân tại A
Mà \(\widehat{A}=90^o\)
=> Tg ABC vuông cân tại A
#H
Bạch Nhiên Hợp Lí ạ