Cho S.ABCD, ABCD là hình chữ nhật có AB=2a; AD=2a. Các cạnh bên bằng nhau và bằng a 2 .Góc tạo bởi giữa cạnh bên và đáy bằng α . Khi đó tan α
A. 10 5
B. 15 5
C. 20 5
D. 1 3
Cho hình chóp S.ABCD có SA ⊥ (ABCD), đáy ABCD là hình chữ nhật. Tính thể tích S.ABCD biết A B = a ; A D = 2 a ; S A = 3 a .
A. a 3
B. 6 a 3
C. 2 a 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, BC=2a, SA=2a, SA vuông góc với mặt phẳng (ABCD). Tính thể tích khối chóp S.ABCD theo a.
A. 8a3/3
B. 4a3 /3
C. 2a3
D. 4a3
Đáp án B
Diện tích đáy ABCD là SABCD = AB. BC = a.2a = 2a2.
Thể tích khối chóp S.ABCD là:
V = 1 3 . S A . S A B C D = 1 3 . 2 a . 2 a 2 = 4 a 3 3
Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB = a, AD = 2a, SA = 2a, SA vuông góc với mp(ABCD). Tính thể tích khối chóp S.ABCD.
A. 4 a 3 3 (đvtt)
B. 4 a 3 (đvtt)
C. 2 a 3 3 (đvtt)
D. 2 a 3 (đvtt)
Đáp án A
Ta có:
V S . A B C D = 1 3 S A . S A B C D = 1 3 .2 a . a .2 a = 4 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, S A ⊥ A B C D , S A = 2 a , A B = a , B C = 2 a . Côsin của góc giữa SC và DB bằng:
A. 1 2 5
B. − 1 5
C. 1 5
D. 2 5
Đáp án C
Ta có: S C → . B D → = S A → + A C → . B D → = S A → . B D → + A C → . B D → = A C → . B D →
= A C . B D . cos D O C ^ = A C 2 . O D 2 + O C 2 − D C 2 2 O D . O C
= A C 2 . O D 2 + O C 2 − D C 2 2 O C 2 = 2 2 O C 2 − D C 2
= 2 5 a 2 2 − a 2 = 3 a 2
Do đó: cos S C → , B D → = S C → . B D → S C . B D = 3 a 2 3 a . a 5 = 1 5
Vậy cos S C , B D = cos S C → , B D → = 1 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật S A ⊥ ( A B C D ) , SA = 2a, Ab = a, BC = 2a. Côsin của góc giữa SC và DB bằng
A. 1 2 5
B. - 1 5
C. 1 5
D. 2 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, BC = 2a, SA = 3a. Biết SA vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD là:
A. a 3
B. 2 a 3
C. 6 a 3
D. 12 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a, SA vuông góc với mặt phẳng (ABCD), S A = a 3 . Thể tích của khối chóp S.ABCD là
A. 2 a 3 3
B. a 3 3 3
C. 2 a 3 3 3
D. a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2a, SA =a. Tính thể tích khối chóp S.ABCD.
A. 2a3
B. a3
C. a3/3
D. 2a3/3
Đáp án D
Diện tích hình chữ nhật ABCD là S = 2a2, chiều cao SA =a.
Vậy thể tích khối chóp S.ABCD là V = 1 3 . 2 a 2 . a = 2 3 a 3
Cho hình chóp S.ABCD có đáy (ABCD) là hình chữ nhật, cạnh bên SA vuông góc với đáy (ABCD). Biết AB=a, BC=2a và SC=3a . Tính thể tích khối chóp S.ABCD?
A. 2 a 3
B. a 3
C. 4 3 a 3
D. 2 5 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = 2 a , B C = a , S A = a 3 và SA vuông góc với mặt đáy (ABCD). Thể tích V của khối chóp S.ABCD bằng
A. V = 2 a 3 3 .
B. V = 2 a 3 3 3 .
C. V = a 3 3 .
D. V = a 3 3 3 .
Đáp án B
Do S A ⊥ A B C D
⇒ V S A B C D = 1 3 S A . d t A B C D = 1 3 S A . A B . B C = 1 3 a 3 .2 a . a = 2 a 3 3 3