Câu hỏi: Cho tam giác ABC có AB = 9cm; AC = 12cm. Trên cạnh AB lấy điểm H và trên cạnh AC lấy điểm K sao cho AH = 6cm; AK = 8cm.
a) Chứng minh: HK // BC.
b) Cho biết BC = 18cm. Tính HK?
cho tam giác abc biết ab bằng 9cm AC bằng 12cm BC bằng 16cm hỏi tam giác ABC có phải là tam giác vuông hay không?
Xét tam giác ABC có
\(BC^2=AB^2+AC^2\\ \Rightarrow16^2=9^2+12^2\\\Rightarrow256=81+144 \)
=> Tam giác ABC k phải là tam giác vuông
cho tam giác abc có ab=9cm ac=12cm bc=15cmvà tam giác mnp có mn=12cm mp=16cm np=20cm 1/hỏi tam giác abc và tam giác mnp có đồng dạng không vì sao
AB/MN=AC/MP=BC/NP
=>ΔABC đồng dạng với ΔMNP
Xét \(\Delta ABC\)vuông tại A theo định lí Pitago ta có : \(AB^2+AC^2=BC^2\Rightarrow6^2+8^2=BC^2\)
\(\Rightarrow BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét \(\Delta DEF\)vuông tại D theo định lí Pitago ta có :\(DE^2+DF^2=EF^2\)
=> \(DF^2=EF^2-DE^2=15^2-9^2=144\)
=> \(DF=\sqrt{144}=12\left(cm\right)\)
Để hai tam giác trên đồng dạng với nhau , trước hết tính tỉ lệ tương ứng với 3 cạnh
Xét tam giác ABC và tam giác DEF ta có :
\(\frac{AB}{DE}=\frac{6}{9}=\frac{2}{3}\)
\(\frac{BC}{EF}=\frac{10}{15}=\frac{2}{3}\)
\(\frac{AC}{DF}=\frac{8}{12}=\frac{2}{3}\)
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}\left(=\frac{2}{3}\right)\)
=> Tam giác ABC đồng dạng tam giác DEF
Nếu bạn muốn làm tam giác DEF đồng dạng với tam giác ABC cũng được
hai tam giác ko thể đồng dạng bạn nhé
CÂu 1 Tìm nghiệm của đa thức A(x)= 3x2 - 5x
CÂu 2 Cho tam giác ABC có AB=9cm, AC=6cm, BC=8cm. Hãy so sánh các góc của tam giác ABC
câu 1
A(x)=3x2-5x=0
=>3x2=5x
=>3x=5( chia cả hai vế cho x)
=>x=\(\frac{5}{3}\)
Vậy ...
Câu 2
Vì theo quan hệ giữa canh và ba góc trong một tam giác nên cạnh
dài nhất nên góc đối diên với nó lớn nhất,cạnh ngắn nhất đối diện với cạnh nhỏ nhất
Ta có AB>BC>AC
=>C>A>B
Vậy ...
nhớ tk mình nha
Cho tam giác ABC có độ dài 3 cạnh AB = 6cm, AC = 9cm, BC =12cm. Hỏi tam giác ABC đồng dạng với tam giác mà 3 cạnh bằng 3 đường cao của tam giác ABC không ?
Giúp mình với nha huhu . Cảm ơn các bạn nhiều !
Cho tam giác ABC có góc A = 90độ ,biết AB = 60cm. Hỏi độ dài BC là: A.BC=12cm B.BC=10cm C.BC=9cm D.BC=7cm
Tam giác vuông ABC ( ∠ A = 90 0 ) có AB = 6cm, AC = 8cm và tam giác vuông A’B’C’ ( ∠ A ' = 90 0 ) có A’B’ = 9cm, B’C’ = 15cm. Hỏi rằng hai tam giác vuông ABC và A’B’C’ có đồng dạng với nhau không? Vì sao?
* Trong tam giác vuông A’B’C’ có ∠ A ' = 90 0
Áp dụng định lí Pi-ta-go, ta có: A ' B ' 2 + A ' C ' 2 = B ' C ' 2
Suy ra: A ' C ' 2 = B ' C ' 2 - A ' B ' 2 = 15 2 - 9 2 = 144
Suy ra: A’C’ = 12 (cm)
* Trong tam giác vuông ABC có ∠ A = 90 0
Áp dụng định lí Pi-ta-go, ta có: B C 2 = A B 2 + A C 2 = 6 2 + 8 2 =100
Suy ra: BC = 10 (cm)
Ta có:
Suy ra:
Vậy △ A’B’C’ đồng dạng ΔABC (c.c.c)
Phần trắc nghiệm
Nội dung câu hỏi 1
Tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm, BC = 25cm, khi đó AB bằng:
A. 20cm
B. 15cm
C. 34cm
D. 25/9
Tam giác abc(góc A=90*) có ab=6cm,ac=8cm và tam giác a’b’c’ (góc a’=90*) có a’b’=9cm,b’c’=15cm. Hỏi 2 tam giác có đồng dạng ko? Tại sao ?
không nha
vì 6/9 khác 8/15
=> hai tam giác ko đồng dạng
câu 1 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC. Biết AB = 20cm, BH = 16cm, HC = 5cm. Tính AH, AC.
câu 2 Cho tam giác ABC có các góc B, C nhọn. Kẻ AH vuông góc với BC, biết AC = 15cm, HB = 5cm, HC = 9cm . Tính độ dài cạnh AB.
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm