cho tam giác ABC có góc A= 120o ; AB=6cm
Tính góc A;C ; cạnh AC ; BC
Cho tam giác ABC có A ^ = 120 o . Trên tia phân giác của góc A lấy điểm D sao cho AD=AB+AC. Khi đó tam giác BCD là tam giác gì?
A. cân
B. đều
C. vuông
D. vuông cân
Cho tam giác ABC có Â = 120o, cạnh b = 8cm và c = 5cm. Tính cạnh a, các góc B̂, Ĉ của tam giác đó.
+ a2 = b2 + c2 - 2.bc.cosA = 82 + 52 – 2.5.8.cos120º = 129
⇒ a = √129 cm
Cho góc xOy có số đo 120o điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox, kẻ AC vuông góc với Oy. Tam giác ABC là tam giác gì ? Vì sao?
Hai tam giác vuông ABO (góc B = 90º) và ACO (góc C = 90º) có :
⇒ ΔABO = ΔACO (cạnh huyền – góc nhọn)
⇒ AB = AC (hai cạnh tương ứng) ⇒ ΔABC cân.
Tam giác cân ABC có góc A = 60º nên là tam giác đều.
Cho tam giác ABC cân tại A, góc B A C ^ = 120 o và AB = 4cm Tính thể tích khối tròn xoay lớn nhất có thể khi ta quay tam giác ABC xung quanh đường thẳng chứa một cạnh của tam giác ABC.
cho tam giác ABC có Â=50o,C=70o,góc ngoài của tam giác tại đỉnh B là:
A. 140o
B. 1000
C. 60o
D. 120o
Cho tam giác ABC có các góc nhỏ hơn 120o. Ở phía ngoài tam giác ABC, vẽ các tam giác đều ABD và ACE.Gọi I là giao điểm của DC và BE. Tính số đo góc BIC.
Gọi I là giao điểm của AB và DC
và có:
Nên (c.g.c) do đó
Xét và có
(đối đỉnh)
Nên
Vậy
Gọi N thuộc tia đối của ME sao cho thì đều do có và
Xét và có:
Nên và (c.g.c) do đó
Vậy
coppy mạng lỗi hết bài rồi kìa Nam :))
Cho góc xOy có số đo bằng 120o , điểm A thuộc tia phân giác của góc xOy . Kẻ AB vuông góc với Ox (B thuộc Ox), kẻ Ax vuông góc với Oy (C thuộc Oy), tam giác ABC là tam giác gì ? Vì sao ?
Ta có: OA là tia phân giác của \(\widehat{xOy}\)(gt)
nên \(\widehat{xOA}=\widehat{yOA}=\dfrac{\widehat{xOy}}{2}=\dfrac{120^0}{2}=60^0\)
hay \(\left\{{}\begin{matrix}\widehat{BOA}=60^0\\\widehat{COA}=60^0\end{matrix}\right.\)
Ta có: ΔAOC vuông tại C(AC\(\perp\)Oy tại C)
nên \(\widehat{CAO}+\widehat{COA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{CAO}=30^0\)
Ta có: ΔAOB vuông tại B(AB\(\perp Ox\) tại B)
nên \(\widehat{BAO}+\widehat{BOA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BAO}=30^0\)
Ta có: \(\widehat{CAB}=\widehat{CAO}+\widehat{BAO}\)(tia AO nằm giữa hai tia AB,AC)
\(\Leftrightarrow\widehat{CAB}=30^0+30^0\)
hay \(\widehat{CAB}=60^0\)
Xét ΔAOC vuông tại C và ΔAOB vuông tại B có
AO chung
\(\widehat{CAO}=\widehat{BAO}\left(=30^0\right)\)
Do đó: ΔAOC=ΔAOB(cạnh huyền-góc nhọn)
hay AC=AB(hai cạnh tương ứng)
Xét ΔABC có AB=AC(cmt)
nên ΔABC cân tại A(Định nghĩa tam giác cân)
Xét ΔABC cân tại A có \(\widehat{BAC}=60^0\)(cmt)
nên ΔABC đều(Dấu hiệu nhận biết tam giác đều)
Tam giác ABC có các đường phân giác BD và CE cắt nhau tại I trong đó góc BIC bằng 120 o . Số đo góc A là:
A. 60 °
B. 70 °
C. 110 °
D. 50 °
Trong tam giác BIC có ∠(BIC) + ∠(IBC) + ∠(ICB) = 180o ⇒ (IBC) + (ICB) = 60o
∠(ABC) + ∠(ACB) = 2∠(IBC) + 2∠(ICB) = 2(∠(IBC) + ∠(ICB) ) = 2.60o = 120o
Có ∠A = 180o - 120o = 60o. Chọn A
Cho tam giác ABC vuông cân ở A, có A ^ = 120 o . Trên đáy BC lấy hai điểm M,N sao cho BM=CN=AB
Tính số đo góc M A N ^
A. 45 °
B. 30 °
C. 90 °
D. 60 °
Cho khối chóp S . ABC có đáy là tam giác ABC cân tại A, BAC = 120o, AB = a. Cạnh bên SA vuông góc với mặt đáy, SA = a. Thể tích khối chóp đã cho bằng
A. a 3 3 4
B. a 3 3 12
C. a 3 3 2
D. a 3 3 6
Phương pháp:
Sử dụng
Thể tích khối chóp V = 1 3 h.S với h là chiều cao hình chóp và S là diện tích đáy.
Cách giải:
Diện tích đáy SABC = 1 2 AB. AC. sin BAC
Thể tích khối chóp
Chọn B.