cho tam giác ABC có BC=5cm; AB+AC=7 và AC-AB=1cm
tính AC, AB
Cho tam giác ABC có AH vuông góc với BC .Biết AB=5cm,AC=5cm,Bc=căn50 a) Tam giác ABC có phải là tam giác vuông không ? b) Chứng minh tam giác AHC cân.Tính độ dài cạnh AH
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)
nên ΔAHC vuông cân tại H
=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)
a)Cho tam giác ABC vuông tại A, biết AB=4cm; BC=5cm, Tonhs cosC+TanB
b) Cho tam giác ABC vuông tại A, có AB=5cm,BC=10cm. Tính sinC và số đo góc B
c) Cho tam giác ABC vuông tại A, biết cosB=8cm. hãy tính các tỉ số lượng giác của góc C. E c.ơn ạ!
Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?
a) Xét \(\Delta ABC\) vuông tại `A`
Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)
\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\)
Vậy: \(AC=3cm\)
Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)
\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)
Vậy: Góc C khoảng \(53^o\)
Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)
\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)
Vậy: Góc B khoảng \(37^o\)
_
b) Xét \(\Delta ABC\) vuông tại `A`
Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)
\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)
Vậy: \(AC=5\sqrt{3}cm\)
Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)
\(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)
Vậy: Góc C là \(30^o\)
Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)
\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)
Vậy: Góc B là \(60^o\).
Cho tam giác ABC có A = 90 độ ; AB = 3cm ; BC = 5cm . Diện tích của tam giác ABC bằng : a) 6cm ² b) 5cm ² c) 4cm ²
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Cho tam giác ABC có AH vuông góc với BC (H thuộc BC) biết BC = 5cm, AH = 4 cm. Tính diện tích tam giác ABC
S ABC=1/2*AH*BC=1/2*4*5=10cm2
cho tam giác ABC có AB-5cm, BC=6cm, Ac=7,5cm. chứng tỏ tam giác ABC là tam giác uông
Cho tam giác ABC vuông tại A có AB\(=\) 3cm, BC \(=5cm.\)
Tính diện tích tam giác ABC
Áp dụng định lí Pytago có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
Diện tích tam giác ABC là:
( 3. 5 ): 2 = 7.5 ( cm2)
Đ/s:...
cho tam giác ABC có AB =3cm AC=4cm BC=5cm. Tính các góc trong tam giác ABC
Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\
\Rightarrow\widehat{B}=53^o8'\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)
Theo định lí pytago ta có: \(AB^2+AC^2=BC^2=9+16=BC^2=25\)
⇒ Tam giác ABC vuông tại A ⇒ \(\widehat{A}=90^\circ\)
Theo tỉ lệ thức trong tam giác vuông:
\(sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}=0,8\approx53^{\circ}\)
\(\widehat{C}=90^{\circ}-53^{\circ}=37^{\circ}\)
Cho tam giác ABC có độ dài các cạnh A B = 4 c m , A C = 5 c m , B C = 5 c m . Tìm góc lớn nhất của tam giác
A. Góc A
B. Góc B
C. Góc C
D. Góc B và góc A
Vì cạnh AC = BC = 5cm nên ∠B = ∠A và cùng là góc lớn nhất. Chọn D
Cho tam giác ABC có AH _|_ BC (H thuộc BC) Có AH=5cm , BC=4cm Tính diện tích tam giác ABC Mọi người giúp em bài toán này với ạ!
vì Δ ABC có AH \(\perp\)BC ( H thuộc BC)nên AH là đường cao của Δ ABC
=>\(S_{ABC}=\dfrac{1}{2}.AH.BC=\dfrac{1}{2}.5.4=10cm^2\)