cho tam giác abc có góc b= góc a .tia phân giác có góc a cắt bc tại d chứng minh rằng db = dc , ab= ac
Sửa đề: góc b=góc c
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
Suy ra: AB=AC
Ta có: ΔABC cân tại A
mà AD là đường phân giác ứng với cạnh BC
nên D là trung điểm của BC
hay DB=DC
cho tam giác ABC có góc A =90 độ; BC=2AB; E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a/chứng minh DB là tia phân giác của góc ADE
b/ chứng minh BD=DC
c/tính góc C, góc B của tam giác ABC
cho tam giác ABC có AB=BC . Tia phân giác của góc A cắt BC tại D . Chứ minh rằng
a, DB =DC
b, AD vuông góc với BC
a) Xét ΔABD và ΔACD có
AB=AC(gt)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
⇒DB=DC(hai cạnh tương ứng)
b) Vì AB=AC(gt)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Vì DB=DC(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
hay AD⊥BC(đpcm)
Cho tam giác ABc có AB=AC, góc B=góc C tia phân giác góc cắt BC tại D Chứng minh :
a)Tam giác ADB=ADC b)DB=DC c)AD vuông góc BC
ai giúp mình với
a: Xét ΔABD và ΔACD có
AB=AC
góc BAD=goc CAD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>BD=CD
c: ΔACB cân tại A
mà ADlà trung tuyến
nên AD vuông góc BC
Bài 2: Cho tam giác ABC có góc a = 90độ và BC = 2AB, E là trung điểm của BC. Tia phân giác của góc B cắt cạnh AC ở D. a . Chứng minh DB là tia phân giác của góc ADE; b . Chứng minh BD = DC ; c . Tính góc B và góc C của tam giác ABC.
cho tam giác ABC có B = C . Tia phân giác của góc A cắt BC tại D chứng minh DB = DC, AB = AC
Tam giác ABC có góc B = góc C
=> ABC là tam giác cân (hai góc kề cạnh đáy bằng nhau)
=> AB = AC
Xét hai tam giác BAD và CAD có:
AC = AB (cmt)
góc BAD = góc CAD (AD là phân giác của góc A)
góc B = góc C (gt)
=> tam giác BAD = tam giác CAD (g.c.g)
=> DB = DC
*Vì tam giác ABC co góc B=C
=>tam giác ABC là tam giác cân
=>AB=AC
* Xét hai tam giác ABD và tam giác ADC có:
AB=AC(chứng minh trên)
góc B=góc C(GIẢ THIẾT)
AD là cạnh chung
=>tam giác ABD=ADC(c-g-c)
=>DB=DC(2 cạnh tương ứng)
Xét tam giác ABC , ta có :
\(\widehat{B}\)= \(\widehat{C}\) (giả thuyết)
=> Tam giác ABC cân tại \(\widehat{A}\)
=> AB = AC (tính chất tam giác cân)
Vì tam giác ABC cân tại \(\widehat{A}\)
=> AD là đường phân giác
=> DB = DC
Cho tam giác ABC, \(\widehat{A}=90^0;BC=2AB\). Tia phân giác của góc B cắt cạnh AC tại D.
a/ Chứng minh rằng DB=DC
b/ Tính góc B, góc C của tam giác ABC
a/ Gọi E là trung điểm của BC
Ta có: \(BC=2AB\left(gt\right)\)
\(\Rightarrow AB=\frac{1}{2}BC\) (1)
Lại có E là trung điểm của BC
\(\Rightarrow BE=EC=\frac{1}{2}BC\) (2)
Từ (1) và (2) \(\Rightarrow AB=BE=EC\)
Xét \(\Delta BDA\) và \(\Delta BDE\) có:
BD chung
\(\widehat{B_1}=\widehat{B_2}\) (do BD là phân giác của \(\widehat{B}\))
AB=BE (cmt)
Suy ra: \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)
Xét \(\Delta BED\) và \(\Delta CED\) có:
\(\widehat{E_1}=\widehat{E_2}=90^0\) ( kề bù và \(\widehat{E_1}=90^0\))
DE chung
BE=EC (cmt)
Suy ra: \(\Delta BED=\Delta CED\left(c.g.c\right)\)
\(\Rightarrow DB=DC\) (hai cạnh tương ứng)
b/ Xét \(\Delta ABC\) có:
\(\widehat{B}+\widehat{C}=90^0\)
Mà: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\) (Do \(\Delta BED=\Delta CED\)) và\(\widehat{B_1}=\widehat{B_2}\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}\). Mà: \(\widehat{B_1}+\widehat{B_2}+\widehat{C}=90^0\)
Suy ra: \(\widehat{B_1}=\widehat{B_2}=\widehat{C}=90^0\div3=30^0\)
Nên: \(\widehat{B}=\widehat{B_1}+\widehat{B_2}=30^0+30^0=60^0\)
Lưu ý: Hình vẽ minh họa phía dưới
Cho tam giác ABC có góc a = 90độ và BC = 2AB, E là trung điểm của BC. Tia phân
giác của góc B cắt cạnh AC ở D.
a . Chứng minh DB là tia phân giác của góc ADE;
b . Chứng minh BD = DC ;
c . Tính góc B và góc C của tam giác ABC.
Xét tam giác ABD và tam giác EBD có :
AB = BE (trung điểm)
góc ABD = góc EBD (phân giác) => tam giác ABD = tam giác EBD (c.g.c)
BD chung
=> góc BDA = góc BDE
Mà DB thuộc góc ADE
=> DB là phân giác của góc ADE
b) Ta có góc BAD = góc BED (2 góc tương ứng)
Vì góc BED kề bù với góc CED
=> góc BED + CED = 180
mà góc BED = 90
=> góc CED = 90
Xét tam giác BED và tam giác CED có :
BE = CE
Góc BED = góc CED => tam giác BED = tam giác CED (c.g.c)
DE chung
=> BD = CD (2 cạnh tương ứng)
c) tự làm
Từ 2 tam giác bằng nhau BED và tam giác CED , có
góc DBE = ECD (2 góc tương ứng )
Mà góc ABD = góc DBE = góc ECD (1)
Xét tam giác ABC có :
góc BAC + góc ABC + góc BCA = 180
Mà góc BAC = 90 ; và (1)
=> góc ABC + góc BCA = 2.góc ABD + góc ABD = 90
=> 3. góc ABD = 90
=> góc ABD = 30
=> ABD = góc DBE = góc ECD = 30
=> Góc ABC = 60 ; góc BCA = 30
Cho tam giác ABC có góc B = góc C . Tia phân giác của góc A cắt BC tại D. Chứng minh rằng BD=DC;AB=AC
cái này dẽ mà chỉ càn chứng minh 2 tam giác có chứa 2 cạnh đó bằng nhau là được
Xét tam giác ABD và tam giác ACD ta có:
Góc BAD = góc CAD (t/chất tia phân giác)
AD cạnh chung
Góc B = góc C (gt)
=> Tam giác ABD = tam giác ACD (g.c.g)
=> BD = DC (2 cạnh tương ứng)
AB = AC (2 cạnh tương ứng)
Mấy bài này cũng dễ mà, tự động não k đc à?
THANH NGUYEN làm sai rồi bạn ơi
VÌ cạnh có xen giữa 2 góc đâu
Cho tam giác ABC vuông ở A và BC = 2.AB. Gọi E là trung điểm của BC. Tia phân giác của góc B cắt AC tại D.
a) Chứng minh DB là phân giác của góc ADE.
b) Chứng minh BD = DC.
c) Tính góc B, góc C của tam giác ABC
a) Vì BC=2 AB
Mà E là trung điểm của BC
=> AB= BE = EC
Xét ΔABD và ΔEBD có:
AB=BE (cmt)
góc A1 = góc A2(gt)
BD: cạnh chung
=> ΔABD=ΔEBD (c.g.c)
=> góc ADB= góc EDB
=> DB là tia pg của góc ADE
b) VÌ ΔABD=ΔEBD( cmt)
=> góc BAD= góc BED=90
Mà : góc DEB + góc DEC=180
=> góc DEB= góc DEC
Xét ΔDEB và ΔDEC có:
DE:cạnh chung
góc DEB = góc DEC(cmt)
BE=CE(gt)
=> ΔDEB=ΔDEC(c.g.c)
=> BD=DC
c) Vì ΔDEB=ΔDEC(cmt)
=> góc B2= góc C
Mà: góc B+ góc C=90
<=> 2 B2+ góc C=90
<=> 3 góc B2=90
<=> B2=30
Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60
a) Co tam giac ABC vuong tai A va BE=EC(gt)
=> AE=BE
Xet tam giac ABD va tam giac EBD co:
AB=BE(cmt); goc ABD= goc EBD(BD la tia phan giac cua goc B); BD:canh chung
=>Tam giac ABD=tam giac EBD(cgc)
=>Goc ADB = goc EDB(2 goc tuong ung)
Xet tam giac AED co goc ADB = goc EDB(cmt)
=>BD là tia phân giác của tam giác AED.
b) Co tam giac ABD = tam giac EBD cau a)
Ma goc A =90 do
=>E = 90 do
Xet tam giac BED va tam giac CED co:
BE= EC(gt); goc BED= goc CED (=90 do); ED:chung
=> Tam giac BED = Tam giac CED(cgc)
=>BD= CD(2 canh tuong ung)
Hi Hi, minh chua nghi ra cau c ha! Sorry!