b. Chứng minh abcdeg chia hết cho 23; 29 biết rằng abc = 2deg
7)Chứng minh rằng :
a) abcabc chia hết cho 7,11,13
b) abcdeg chia hết cho 23 và 29 , biết rằng abc=2.deg
8)Chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng minh rằng :
a)abcabc chia hết cho 7 , 11 và 13
b)abcdeg chia hết cho 23 và 29 , biết rằng abc = 2.deg
a)
abcabc=abc.1001
Mà 1001 chia hết cho cả 7 ;11và 13
=>abc.1001 chia hết cho 7;11;13
Hay abcabc chia hết cho 7;11;13
Vậy............................
b)
abcdeg=abc.1000+deg (1)
Thay abc=2.deg vào (1) ta có :
deg.2.1000+deg
=deg.2001
Mà 2001 cùng chia hết ch0 23 và 29
=>deg.2001 chia hết cho cả 23 và 29
Hay abcdeg chia hết cho 23 và 29
Vậy ......................................
Chứng minh rằng abcdeg chia hết cho 23 và 29, biết rằng abc = 2.deg
Ta có: \(\overline{abcdeg}=1000\overline{abc}+\overline{deg}=2000\overline{deg}+\overline{deg}=2001\overline{deg}\)
Vì 2001 chia hết cho 23 và 29 \(\Rightarrow2001\overline{deg}\) chia hết cho 23 và 29
Vậy \(\overline{abcdeg}\) chia hết cho 23 và 29
\(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}\\ =1000.2.\overline{deg}+\overline{deg}\\ =\left(2000+1\right)\overline{deg}\\ =2001.\overline{deg}\\ =23.29.3.\overline{deg}⋮23,29\left(đcpcm\right)\)
1, Chứng minh abcabc chia hết cho 7 ; 11 và 13
2,Cho abc= 3 nhân deg . Chứng tỏ abcdeg chia hết cho 23
1) ta co abcabc=abc.1000+abc
= abc.1001 chia hết cho
vi 1001 chia het cho 7;11;13
=> abc.1001 chia het cho 7;11;13
=> abcabc chia het cho 7;11;13
2) trong câu hỏi tương tự nhé
Chứng minh rằng abcdeg chia hết cho 23 và 29. Biết rằng abc= 2x deg
\(\overline{abcdeg}\)
= \(\overline{abc}\) x 1000 + \(\overline{deg}\)
= \(\overline{deg}\) x 2 x 1000 + \(\overline{deg}\) x 1
= \(\overline{deg}\) x 2000 + \(\overline{deg}\) x 1
= \(\overline{deg}\) x (2000 + 1)
= \(\overline{deg}\) x 2001
= \(\overline{deg}\) x 23 x 29 x 3 ⋮ 23; và 29 (đpcm)
Chứng minh rằng abcdeg chia hết cho 23 và 29. Biết rằng abc= 2x deg
\(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.2.\overline{deg}+\overline{deg}=\)
\(=2001.\overline{deg}=23.87.\overline{deg}=29.69.\overline{deg}\)
\(\Rightarrow\overline{abcdeg}\) chia hết cho 23 và 29
Chứng minh rằng abcdeg chia hết cho 23 và 29 , biết deg.2 bằng abc
Ta có : abcdeg = abc .1000 + deg
= ( deg . 2 ) . 1000 + deg
= deg . ( 2. 1000) + deg
= deg . 2000 + deg
= deg . ( 2000 +1)
= deg . 2001
= deg . (23 .29)
Ta thấy abcdeg là tích của deg và 23 và 29
=> abcdeg chia hết cho 23 và 29
Vậy abcdeg chia hết cho 23 và 29
Chứng minh rằng abcdeg chia hết cho 23 và 29. Biết rằng abc= 2x deg
Ta có : abcdeg
= abc .1000 +deg
Lại có : abc = 2 deg
=>abcdeg = 2 deg .1000 +deg
= 2000 . deg + deg
= 2001 . deg
Hay abcdeg \(⋮\)23 và 29 (đpcm) vì 2001 =23.29.3
= 2001 . deg \(⋮\)23 và 29
các số abcdeg;abc;deg đều có gạch đầu nhé bạn
Dấu "." là dấu nhân nha bạn
cho ab+cd+eg chia hết cho 11
a, chứng minh rằng abcdeg chia hết cho 11
b, cho abcdeg chia hết cho 11 . Chứng minh rằng ab+cd+eg chia hết cho 11
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11