Có bao nhiêu giá trị nguyên của tham số m trong đoạn − 2019 ; 2019 để hàm số y = ln x 2 + 2 − m x + 1 đồng biến trên R
A. 4038
B. 2019
C. 2020
D. 1009
Có bao nhiêu giá trị nguyên thuộc đoạn [0;2019] của tham số m để phương trình 4 x - m + 2018 2 x + 2019 + 3 m = 0 có hai nghiệm trái dấu?
A.2016
B.2019
C.2013
D.2018
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn - 10 ; 10 để hàm số y = x 3 - 3 x 2 + 3 m x + 2019 nghịch biến trên khoảng 1 ; 2 ?
A. 11
B. 20
C. 10
D. 21
Chọn A.
TXĐ: D = R
Ta có: y ' = 3 x 2 - 6 x + 3 m
Để hàm số đã cho nghịch biến trên 1 ; 2
thì y ' ≤ 0 , ∀ x ∈ 1 ; 2 và bằng 0 tại hữu hạn điểm
Hàm số y = x - 1 2 đồng biến trên 1 ; + ∞ nên cũng đồng biến trên 1 ; 2
Lại có m ∈ - 10 ; 10 và m ∈ Z nên m ∈ - 10 ; - 9 ; . . ; 0
Vậy có 11 giá trị của m
Có bao nhiêu giá trị nguyên của tham số m để hàm số y = log x 2 - 2 x m + 3 + 2019 xác định với mọi x ∈ R ?
A. Vô số
B. 2019
C. 2020
D. 2018
Cho hàm số y = x 3 - 3 m x + 2 với m là tham số. Có bao nhiêu giá trị nguyên m < 2019 để hàm số có nhiều điểm cực trị nhất?
A. 2017
B. 2018
C. 4037
D. 4035
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2017;2018] để hàm số y = 1 3 x 3 - m x 2 + ( m + 2 ) x có hai điểm cực trị nằm trong khoảng 0 ; + ∞ .
A. 2015
B. 2016
C. 2018
D. 4035
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2017;2018] để hàm số y = 1 3 x 3 - m x 2 + ( m + 2 ) x có hai điểm cực trị nằm trong khoảng 0 ; + ∞ .
A. 2015
B. 2016
C. 2018
D. 4035
Chọn B
Phương pháp:
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Ta sử dụng phương trình có hai nghiệm dương phân biệt
Cách giải:
Ta có
Từ ycbt suy ra ta phải tìm m để hàm số có hai điểm cực trị dương hay phương trình y' = 0 có hai nghiệm dương phân biệt.
Khi đó
Mà nên có 2018 – 3 + 1 = 2016 giá trị m thỏa mãn.
Có tất cả bao nhiêu giá trị nguyên của tham số m (biết m ≥ - 2019 ) để hệ phương trình sau có nghiệm thực?
x 2 + x - y 3 = 1 - 2 m 2 x 3 - x 2 y 3 - 2 x 2 + x y 3 = m
A. 2021
B. 2019
C. 2020
D. 2018
Có bao nhiêu giá trị nguyên trong đoạn - 2018 ; 2018 của tham số m để phương trình 3 x 2 - 3 m x + 1 = 3 3 x 3 + x có 2 nghiệm phân biệt?
A. 4036
B. 4037
C. 2019
D. 2020
Chọn đáp án C.
Bình luận:
Quay lại với lời giải ở trên: Ta chia cả 2 vế của (*) cho x chính là chia cả 2 vế của (2) cho
Có bao nhiêu giá trị nguyên dương của tham số m để giá trị nhỏ nhất của hàm số y = x + m 2 x - 1 trên đoạn [2;3] bằng 14.
A. 2
B. 1
C. 0
D. 4
Chọn B
Tập xác định D = ℝ \{1}
Ta có
Do đó hàm số nghịch biến trên đoạn [2;3]
Suy ra
Vậy có 1 giá trị nguyên dương của m.