Tìm x , y , z , t biết x , y ,t TLT với 2 ; -3 ; 4
z , t TLN với -2 ; 1/3
và x - 3y + 2z = 5t
Tìm x , y , z biết \(1-x\) ; \(2-y\) ; \(3-z\) TLT với 2 , 3, 4 và \(2x-z+3y=50\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
cho x và y là hai đại lượng TLT
x TLT với y theo hệ số tỉ lệ 2/3
y TLT vơi z theo hệ số tỉ lệ a
z TLT với t theo hệ số tỉ lệ k/2
t TLT vói u theo hệ số tỉ lệ -5
tìm các số x,y,z biết x/2=y/4=z/6 và x-y+z=8
GIÚP MÌNH VỚI MK ĐG GẤP.
Ta có:x/2=y/4=z/6 =x-y+z/2-4+6=x-y+z=8/2-4+6=4=8/4
Ta thấy:8/4=2/1=2
Vì thế x=2x2=4
y=2x4=8
z=2x6=12
Vậy đáp số là:x=4;y=8;z=12
Nhớ k cho mình nha !Cảm ơn nhiều
Vì \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)và x-y+z=8
Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=4k\\z=6k\end{cases}}\)
mà x+y+z=8 \(\Rightarrow\)2k-4k+6k=8
\(\Rightarrow\)4k=8
\(\Leftrightarrow\)k=2
Vậy \(\hept{\begin{cases}x=4\\y=8\\z=12\end{cases}}\)
a/Biết y tỉ lệ thuận với x theo hệ số tỉ lệ k1 và x tỉ lệ thuận với z theo hệ số tỉ lệ k2 (k1,k2 khác 0). Hãy chứng tỏ rằng y tỉ lệ thuận với z và tìm hệ số tỉ lệ.
b/Biết x tỉ lệ thuận với y theo hệ số tỉ lệ bằng 0,4 và y tỉ lệ thuận với z theo hệ số tỉ lệ 6.
Tìm x,biết z bằng 5;z bằng -1/3;z bằng 3/5.
Giups mìnk với,đg cần gấp!!!!
a: \(y=k_1\cdot x\)
\(x=k_2\cdot z\)
\(\Leftrightarrow k_2\cdot z=\dfrac{y}{k_1}\)
\(\Leftrightarrow y=z\cdot k_1\cdot k_2\)
Vậy: Hệ số tỉ lệ là \(k=k_1\cdot k_2\)
b: Vì x tỉ lệ thuận với y theo hệ số tỉ lệ 0,4
và y tỉ lệ thuận với z theo hệ số tỉ lệ 6
nên x tỉ lệ thuận với z theo hệ số tỉ lệ 2,4
=>x=2,4z
Khi z=5 thì x=12
Khi z=-1/3 thì x=-0,8
Khi z=3/5 thì x=1,44
Theo đề bài ta có: z-y=1
Và x,y,z tỉ lệ với 3,5,7 suy ra \(x:y:z=3:5:7\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{z-y}{7-5}=\frac{1}{2}\)
\(\Rightarrow\begin{cases}\frac{x}{3}=\frac{1}{2}\Rightarrow x=\frac{3\cdot1}{2}=\frac{3}{2}\\\frac{y}{5}=\frac{1}{2}\Rightarrow y=\frac{5\cdot1}{2}=\frac{5}{2}\\\frac{z}{7}=\frac{1}{2}\Rightarrow z=\frac{7\cdot1}{2}=\frac{7}{2}\end{cases}\)
Giải:
Ta có: \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\) và z - y = 1
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{z-y}{7-5}=\frac{1}{2}\)
+) \(\frac{x}{3}=\frac{1}{2}\Rightarrow x=1,5\)
+) \(\frac{y}{5}=\frac{1}{2}\Rightarrow y=2,5\)
+) \(\frac{z}{7}=2\Rightarrow z=3,5\)
Vậy bộ số \(\left(x;y;z\right)\) lần lượt là \(\left(1,5;2,5;3,5\right)\)
Tìm x,y,z biết \(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
với \(x,y,z\ne0\)
Ap dụng tính chất dãy tỉ số bằng nhau
: a/b = c/d = e/f = a+b+c/b+d+f có b+d+f \(\ne\)0
Ta xét trường hợp x+y+z = 0 có :
x/y+z+1= y/x+z+1 = z/(x+y-2) = 0 => x = y = z = 0
Ta xét x+y+z = 0, tính chất tỉ lệ thức:
x+y+z = x/y+z+1 = y/x+z+1 = z/x+y-2 = x+y+z/2x+2y+2z = 1/2
=> x+y+z = 1/2 và:
2x = y+z+1 = 1/2 - x + 1 => x = 1/2
2y = x+z+1 = 1/2 - y + 1 => y = 1/2
z = 1/2 - (x+y) = 1/2 - 1 = -1/2
Vậy có căp x,y,z thỏa mãn: 0,0,0 và 1/2,1/2,-1/2
Cho x , y , z TLT vs 2 , 3 , 4 ; x,t TLN vs 1/3 , -2 và x + y + z - 2t = 4. Tính x/2 + y/3 - z + t