Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
letienluc
Xem chi tiết
tran manh tri
Xem chi tiết
Ten TTaaii
Xem chi tiết
letienluc
Xem chi tiết
Hyuga Jiro
Xem chi tiết
Ta đa
Xem chi tiết
zZz Cool Kid_new zZz
22 tháng 5 2019 lúc 18:59

Với  \(n=0\) thì bài toán trở thành:

\(\frac{1}{a+b-c}+\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\left(H\right)\)

Áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có:\(\frac{1}{a+b-c}+\frac{1}{a-b+c}\ge\frac{4}{a+b-c+a-b+c}=\frac{2}{a}\left(1\right)\)

Chứng minh tương tự,ta có:

\(\frac{1}{a-b+c}+\frac{1}{-a+b+c}\ge\frac{2}{b}\left(2\right)\)

\(\frac{1}{-a+b+c}+\frac{1}{a+b-c}\ge\frac{2}{c}\left(3\right)\)

Cộng vế theo vế của \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow H\left(true\right)\)

Với \(n=1\) thì bài toán trở thành:

\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}\ge3\left(U\right)\)

Đặt \(-a+b+c=x;a-b+c=y;a+b-c=z\)

\(\Rightarrow a-b+c+a+b-c=y+z\)

\(\Rightarrow2a=y+z\)

\(\Rightarrow a=\frac{y+z}{2}\)

Tương tự,ta có:\(b=\frac{x+z}{2};c=\frac{x+y}{2}\)

Khi đó,ta có:\(\frac{c}{a+b-c}+\frac{b}{a-b+c}+\frac{a}{-a+b+c}=\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)

\(=\frac{1}{2}\left[\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{z}+\frac{1}{x}\right)\right]\)( Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge2\))

\(\ge\frac{1}{2}\left(2+2+2\right)\)

\(=3\left(4\right)\)

Từ \(\left(4\right)\Rightarrow U\left(true\right)\)

Với  \(n=2\) thì ta có:

\(\left(a^{n-2}-b^{n-2}\right)\left(a-b\right)\ge0\)

\(\Rightarrow a^{n-1}+b^{n-1}\ge b^{n-2}a+a^{n-2}b\left(5\right)\)

Tương tự,ta có:

\(b^{n-1}+c^{n-1}\ge b^{n-2}c+c^{n-2}b\left(6\right)\)

\(c^{n-1}+a^{n-1}\ge c^{n-2}a+a^{n-2}c\left(7\right)\)

Áp dụng BĐT AM-GM cho 2 số không âm,ta có:

\(\frac{a^n}{-a+b+c}+\left(-a+b+c\right)\cdot a^{n-2}\ge2\sqrt{\frac{a^n}{-a+b+c}\cdot\left(-a+b+c\right)\cdot a^{n-2}}\)

\(\Rightarrow\frac{a^n}{-a+b+c}-a^{n-1}+a^{n-2}b+a^{n-2}c\ge2\cdot a^{n-1}\)

\(\Rightarrow\frac{a^n}{-a+b+c}+a^{n-2}b+a^{n-2}c\ge3a^{n-1}\left(8\right)\)

Tương tự ta có:

\(\frac{b^n}{a-b+c}+ab^{n-2}+cb^{n-2}\ge3b^{n-1}\left(9\right)\)

\(\frac{c^n}{a+b-c}+ac^{n-2}+bc^{n-2}\ge3c^{n-1}\left(10\right)\) 

Cộng vế theo vế của \(\left(5\right);\left(6\right);\left(7\right);\left(8\right);\left(9\right);\left(10\right)\RightarrowĐPCM\)

P/S:Bài dài nên e không biết có đúng ko nữa:3

FPT
23 tháng 5 2019 lúc 8:48

Sau đây là lời giải siêu xàm của em!

Với n = 0 thì ta cần chứng minh \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (1)

Đặt \(\hept{\begin{cases}a+b-c=x\\b+c-a=y\\c+a-b=z\end{cases}}\Rightarrow a=\frac{z+x}{2};b=\frac{x+y}{2};c=\frac{y+z}{2}\)

BĐT (1) trở thành: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Thật vậy,áp dụng BĐT quen thuộc \(\frac{1}{m}+\frac{1}{n}\ge\frac{4}{m+n}\),ta có: 

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};\frac{1}{y}+\frac{1}{z}\ge\frac{4}{y+z};\frac{1}{z}+\frac{1}{x}\ge\frac{4}{x+z}\)

Cộng theo vế ta được: \(2VT_{\left(1\right)}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)

\(\Rightarrow VT_{\left(1\right)}\ge\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\)

Vậy BĐT (1) đúng. (*)

Giả sử điều đó đúng với n = k (\(k\inℕ^∗\)) tức là ta có: \(\frac{a^k}{b+c-a}+\frac{b^k}{c+a-b}+\frac{c^k}{a+b-c}\ge a^{k-1}+b^{k-1}+c^{k-1}\)    (2)

Ta đi chứng minh điều đó đúng với n = k  + 1 (\(k\inℕ^∗\)). Tức là c/m:

\(\frac{a^{k+1}}{b+c-a}+\frac{b^{k+1}}{c+a-b}+\frac{c^{k+1}}{a+b-c}\ge a^k+b^k+c^k\) (3)

Thật vậy (3) \(\Leftrightarrow\frac{a^k}{b+c-a}.a+\frac{b^k}{c+a-b}.b+\frac{c^k}{a+b-c}.c\ge a^{k-1}.a+b^{k-1}.b+c^{k-1}.c\)

Và bí!:D

zZz Cool Kid_new zZz
23 tháng 5 2019 lúc 11:32

Sửa lại trường hợp 2 một tí=))

\(\frac{x+y}{2z}+\frac{y+z}{2x}+\frac{z+x}{2y}\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\right]\)(Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\))

\(\ge\frac{1}{2}\left(2+2+2\right)\)

\(=3\)

Vũ Mai Như Quỳnh
Xem chi tiết
Vũ Mai Như Quỳnh
4 tháng 3 2016 lúc 20:37

giải giúp mk với

BOSS TANK CHANNEL
Xem chi tiết
BOSS TANK CHANNEL
13 tháng 4 2018 lúc 20:52

Ai trả lời nhanh mình sẽ tích

Ngô Thị Ngọc Hân
Xem chi tiết
Đinh Tuấn Việt
21 tháng 5 2015 lúc 20:56

ƯCLN(a; b) + BCNN(a; b) = a + b

\(\Leftrightarrow\) b = 1 và a > b hoặc a = b = 1

Vì a \(\in\) N* nên a luôn chia hết cho 1 hay a luôn chia hết cho b

Suy ra điều phải chứng

robert lewandoski
21 tháng 5 2015 lúc 21:07

Ta có:

U7CLN(a,b)+BCNN(a,b)=a+b

Với b=1;a>b thì a=b=1

Mà a là số tự nhiên khác 0

Nên a chia hết cho 1

Ta có:b lại =1=>a chia hết cho b(đpcm)

Hoàng Nguyễn Xuân Dương
22 tháng 5 2015 lúc 9:47

ƯCLN(a; b) + BCNN(a; b) = a + b

 b = 1 và a > b hoặc a = b = 1

Vì a  N* nên a luôn chia hết cho 1 hay a luôn chia hết cho b

=> ĐPCM