Chứng minh mọi ps sau có giá trị là số nguyên
A=10^2002+2/-3; B=10^2003+8/9
Giúp mik với
Chứng minh rằng: \(P\left(x\right)=ax^3+bx^2+cx+d\)có giá trị nguyên với mọi x nguyên khi và chỉ khi 6a, 2b, a+b+c và d là số nguyên.
bài................khó...............quá....................mà...............trời...........lại...............rét................tick..................ủng..............hộ.................mình.................nha.............
CMR các p/s sau có giá trị là số tự nhiên
a) 102002 +2 / 3
b) 102003 + 8 /9
Chứng minh rằng các biểu thức sau có giá trị luôn âm với mọi giá trị của biến a) A = 4 – x2 + 2x b) B = (x + 3)(4 – x) . giúp vớiiiiii :)
a. Đề sai, với \(x=0\Rightarrow A=4>0\)
b. Đề sai, với \(x=0\Rightarrow B=12>0\)
Cho biểu thức :
A = a (a+1) (a+2) (a+4) (a+5) (a+6) + 36
Chứng minh rằng với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương.
\(A=a\left(a+1\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+6\right)+36\)
\(A=a\left(a+6\right)\left(a+2\right)\left(a+4\right)\left(a+5\right)\left(a+1\right)+36\)
\(A=\left(a^2+6a\right)\left(a^2+6a+8\right)\left(a^2+6a+5\right)+36\)
Đặt t = a2 +6a. Khi đó phương trình trở thành:
\(A=t\left(t+8\right)\left(t+5\right)+36\)
\(A=t\left(t^2+13t+40\right)+36\)
\(A=t^3+13t^2+40t+36\)
\(A=t^3+2t^2+11t^2+22t+18t+36\)
\(A=t^2\left(t+2\right)+11t\left(t+2\right)+18\left(t+2\right)\)
\(A=\left(t+2\right)\left(t^2+11t+18\right)\)
\(A=\left(t+2\right)\left(t^2+2t+9t+18\right)\)
\(A=\left(t+2\right)\left[t\left(t+2\right)+9\left(t+2\right)\right]\)
\(A=\left(t+2\right)\left(t+2\right)\left(t+9\right)\)
\(A=\left(t+2\right)^2\left(t+9\right)\)
Thế t = a2 + 6a vào A ta được:
\(A=\left(a^2+6a+2\right)^2\left(a^2+6a+9\right)\)
\(A=\left(a+3\right)^2\left(a^2+6a+2\right)^2\)
\(A=\left[\left(a+3\right)\left(a^2+6a+2\right)\right]^2\)
Vậy với mọi số nguyên a thì giá trị của biểu thức A luôn là một số chính phương
Cho f(x)= ax3+bx2+cx+d. Chứng minh rằng f(x) nhận được giá trị nguyên với mọi x thuộc Z khi và chỉ khi 6a;2b;a+b+c và d là số nguyên.
Ta có: C= 6x^2 -5x +1.
Chứng minh C luôn dương với mọi giá trị của x
Cho A=2x2-5x;B=-x2+x+3;C=2x-2
Chứng minh rằng tring 3 biểu thức điA,B,C có ít nhất một biểu thức luôn có giá trị không âm với mọi giá trị của x
CMR các phân số sau có giá trị là stn
a,10^2002+2/3
b,10^2003+8/9
giai ho cai cam on
bài 1: chứng minh rằng biêu thức \(A=\left(7+4\sqrt{3}\right)^n+\left(7-4\sqrt{3}\right)^n\)nhận giá trị nguyên và không chia hết cho 13 với mọi giá trị nguyên của n.(sử dụng đồng dư thức)
Bài 2: Tìm số dư trong phép chia sau: (1995+1)(1995+2)...(1995+3990) chia cho 31995 (sử dụng quy nạp)
Bài 3: trong kì thi Olympic có 17 học sinh được mang số báo danh trong khoảng từ 1 đến 1000. Chứng tỏ rằng có thể chọn ra 9 học sinh có tổng các số ký dang được mang chia hết cho 9 (sử dụng nguyên lý direchlet)