tìm một đa thức bậc ba P(x) cho biết khi chia P(x) cho các đa thức ( x - 1); ( x - 2 ); ( x - 3 ) đều được dư là 6 và P ( -1 ) = -18
tìm đa thức bậc 3 P(x) cho biết khi chia P(x) cho các đa thức (x-1) ; (x-2) ; (x-3) đều được dư là 6 . P(-1) = -18
Tìm một đa thức bậc ba P(x) biết khi chia P(x) cho các đa thức (x-1),(x-2),(x-3) đều được dư là 6 và P(-1)=-18
Do \(P\left(x\right)\) chia \(x-1;x-2;x-3\) đều dư 6
\(\Rightarrow P\left(x\right)-6\) chia hết cho cả \(x-1;x-2;x-3\)
Mà \(P\left(x\right)\) bậc 3 \(\Rightarrow P\left(x\right)-6\) cũng bậc 3
\(\Rightarrow P\left(x\right)-6=k\left(x-1\right)\left(x-2\right)\left(x-3\right)\) với \(k\ne0\)
\(\Rightarrow P\left(x\right)=k\left(x-1\right)\left(x-2\right)\left(x-3\right)+6\)
Lại có \(P\left(-1\right)=-18\Leftrightarrow k\left(-2\right)\left(-3\right)\left(-4\right)+6=-18\)
\(\Rightarrow k=1\)
Vậy \(P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)+6\)
tìm đa thức f(x) có bậc 2 biết : tại x=-1 đa thức nhận giá trị là 16 và khi lần lượt chia f(x) cho các đa thức (x-1);(x+2);(x-4) đều có số dư là 6
Cho đa thức g(x)=8x3 - 18x2 +x +6
a) Tìm các nghiệm của đa thức g(x)
b) Tìm các hệ số a, b, c của đa thức bậc ba f(x)=x3 + ax2 +bx+c, biết rằng khi chia đa thức f(x) cho đa thức g(x) thì được đa thức dư là r(x)=8x2+4x+5.
Giải MTCT
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
BÀi 1:Tìm đa thức P(x) bậc 3 biết P(x) chia hết cho đa thức x-1 và x-2 và khi chia cho đa thức x2 -x+1 được dư là 2x-3.
Bài 2: Tìm các số thực a, b để đa thức P(x) = x3 + ax2 +bx +4 chia hết cho đa thức (x-2)2
Mọi người giúp mình với, cảm ơn mọi người nhiều!!!
Tìm đa thức bậc 2 f(x) biết f(-1) = 16 và khi lần lượt chia f(x) cho các đa thức ( x – 1); ( x + 2) và ( x – 4 ) đều có số dư là 6
tìm đa thức bậc ba f(x) biết f(x) chia hết cho 2x-1 và khi chia cho các đa thức x-1,x+1, x-2 đều có số dư là 7
Gọi \(f\left(x\right)=ax^3+bx^2+cx+d\)
f(x) chia hết cho 2x-1 và khi chia cho các đa thức x-1,x+1, x-2 đều có số dư là 7.
Áp đụng định lý bezout ta có hệ:
\(\left\{\begin{matrix}0,5^3a+0,5^2b+0,5c+d=0\\a+b+c+d=7\\-a+b-c+d=7\\8a+4b+2c+d=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}a=-\frac{56}{9}\\b=\frac{112}{9}\\c=\frac{56}{9}\\d=-\frac{49}{9}\end{matrix}\right.\)
vậy\(f\left(x\right)=-\frac{56}{9}x^3+\frac{112}{9}x^2+\frac{56}{9}x-\frac{49}{9}\)
cho f(x) là 1 đa thức bậc ba . Biết f(1)= 5; f(-1)=7 khi chia cho đa thức x2 +1 thì dư 5x + 4. Tính f(2014)
Giả sử đa thức thương có dạng là ax + b. Khi đó: f(x) = (x2+1)(ax+b) + 5x+4
Bạn lần lượt thay x = 1 và x = -1 vào đa thức trên thì ra hệ pt vs 2 ẩn a, b. cộng tương ứng từng vế của 2 hệ đó lại là tìm được a, b. thay a, b vào đa thức trên, khai triển ra rồi thay x = 2014 là ok
Tìm 1 đa thức P(x) có bậc 3 . Biết đa thức P(x) chia cho các nhị thức x-1;x-2;x-3 đều có số dư là 6 và giá trị của đa thức P(x) tại x=-1 là 18
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x
Ta có: P(x) -6 chia hết cho 3 nhị thức x-1;x-2;x-3 nên x=1;x=2;x=3 là nghiệm của P(x)-6.
Vì P(x)-6 cũng bậc 3 như P(x) nên ta phải có biểu diễn:
P(x)-6=a(x-1)(x-2)(x-3)
=> P(x)=a(x-1)(x-2)(x-3)+6
P(-1)= -18 nên -24a+6=-18 <=> a =1
Vậy P(x)=(x-1)(x-2)(x-3)+6 =x^3-6x^2+11x