Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khanh Pham
Xem chi tiết
Khanh Pham
10 tháng 5 2022 lúc 18:23

trình bày cả lời giải nữa

Phan Thanh Tịnh
Xem chi tiết
Chibi
29 tháng 3 2017 lúc 10:05

A C B D E 33 19 19 19

1. Ta có: tan(52o) = \(\frac{AE}{AB}\)

=> AE = AB.tan(52o)

2. Ta có: tan(71o) = \(\frac{AC}{AB}\)

=> AC = AB.tan(71o)

3. Ta có: tan(19o) = \(\frac{AD}{AB}\)

=> AD = AB.tan(19o)

4. \(\frac{AE}{CD}\) = \(\frac{AE}{AC-AD}\)

\(\frac{AB.tan\left(52^o\right)}{AB.tan\left(71^o\right)-AB.tan\left(19^o\right)}\)

\(\frac{tan\left(52^o\right)}{tan\left(71^o\right)-tan\left(19^o\right)}\)

\(\frac{\sin\left(52^o\right)}{\cos\left(52^o\right)}\)\(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\sin\left(71^o-19^o\right)}\)

\(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)\(\frac{\cos\left(71^o+19^o\right)+\cos\left(71^o-19^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)\(\frac{\cos\left(90^o\right)+\cos\left(52^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)

Pham Tuan
30 tháng 3 2017 lúc 11:40

to khong thich lam may cai dang nay to biet lam day

tth_new
1 tháng 4 2017 lúc 18:12

CD = 19: (19 : 2) = 2

AE = 2 : 2 = 1

Vậy AE/CD = 1/2

huyendayy🌸
Xem chi tiết

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

Khách vãng lai đã xóa
Phan Hải Đăng
Xem chi tiết
Nguyễn Tất Đạt
5 tháng 7 2019 lúc 7:32

A C B E D F F' G K L H

Trên cạnh BA của \(\Delta\)ABC lấy điểm G sao cho BG = BC. Ta có:

^CFB = 1800 - ^BCF - ^CBF = 1800 - ^BCE - ^CBE = 700 => ^CFB = ^BCF (=700)

=> \(\Delta\)CBF cân tại B => BF = BC = BG => \(\Delta\)GBF cân tại B => ^BGF = (1800 - ^GBF)/2 = 800

=> ^FGA = 1000. Gọi GF cắt AC tại L. Trên đoạn GL lấy điểm F' sao cho ^CAF' = 100

Qua F' dựng đường thẳng song song với AB, đường thẳng này cắt AC tại H

Trên nửa mặt phẳng bờ AB có chứa điểm C, dựng \(\Delta\)GAK đều

Xét \(\Delta\)ALG: ^LGA = 1000 (cmt), ^LAG = 400 => \(\Delta\)ALG cân tại G => \(\Delta\)LF'H cân tại F' (F'H // AG)

Xét \(\Delta\)CLG: ^GCL = ^ACB - ^BCG = 200, ^CLG = 1800 - ^GLA = 1400 => \(\Delta\)CLG cân tại L

Có ^GAF' = ^BAC - ^CAF' = 300 = ^GAK/2 => ^GAF' = ^KAF'. Từ đây dễ có \(\Delta\)F'GA = \(\Delta\)F'KA (c.g.c)
=> F'G = F'K => \(\Delta\)GF'K cân tại F'. Do ^F'GK = ^F'GA - ^KGA = 400 nên ^GF'K = 1000

Suy ra ^GF'K = ^HF'L (= ^AGL = 1000) => ^GF'H = ^KF'L (= 1000 - ^KF'H)

Kết hợp với F'H = F'L; F'G = F'K (cmt) suy ra \(\Delta\)HF'G = \(\Delta\)LF'K (c.g.c) => ^F'LK = ^F'HG

Dễ dàng tính được ^F'LK = ^GLK = (1800 - 400)/2 = 700 => ^F'HG = 700 => ^HGA = 700 (Vì F'H // AG)

Ta thấy \(\Delta\)AGH có ^GAH = 400 , ^HGA = 700 => \(\Delta\)AGH cân tại A

Từ đó AH = AG = GL = CL (Vì các tam giác AGL, CLG cân). Dễ dàng chứng minh:

\(\Delta\)CLF' = \(\Delta\)AHF' (c.g.c) (F'L = F'H, ^F'LC = ^F'HA, CL = AH) => ^LCF' = ^HAF' = ^CAF' = 100

=> ^BCF' = 700 = ^BCE => CF' trùng CE. Ban đầu ta nhận thấy CE cắt GL tại F

Mà CF' trùng CE, F' thuộc GL nên F' trùng F. Tức là ^CAF = ^CAF' = 100 => ^CAF + ACB = 900

Vậy thì AF vuông góc với BC (đpcm).

Đào Thị Lan Nhi
Xem chi tiết
Nico Rossberg
Xem chi tiết
Ngưu Kim
Xem chi tiết
Trần Trung Nguyên
Xem chi tiết
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
24 tháng 10 2019 lúc 16:20

B C A D K

Đặt AB = c; AC = b = BD; BC = a . Hạ AK \(\perp BC\)(chỗ này chả biết chứng minh K khác D kiểu gì@@)

Ta có: Trong tam giác vuông, cạnh đối diện với góc 30o bằng nửa cạnh huyền. Do đó:\(AK=\frac{AB}{2}=\frac{c}{2}\)

\(KD=BD-BK=b-BK=b-\sqrt{c^2-AK^2}=b-\frac{\sqrt{3}}{2}c\) (thay cái phía trên vào)

Mà KD > 0 do đó \(b>\frac{\sqrt{3}}{2}c\)

Từ đây: \(AD=\sqrt{AK^2+KD^2}=\sqrt{b^2+c^2-\sqrt{3}bc}\) (1) (Thay hết vào thôi:v)

Lại có: \(DC=KC-KD=\sqrt{AC^2-AK^2}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

\(=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\) (2) 

Từ (1) và (2) ta cần chứng minh: \(\sqrt{b^2+c^2-\sqrt{3}bc}=\sqrt{b^2-\frac{c^2}{4}}-\left(b-\frac{\sqrt{3}}{2}c\right)\)

Nghĩ ra tới đây và thấy có gì đó sai sai, bác check giúp@@

Khách vãng lai đã xóa