Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kuramajiva
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:17

D là điểm nào bạn?

Nguyễn Việt Lâm
16 tháng 12 2020 lúc 10:28

1.

\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)

\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)

\(\Leftrightarrow a=\sqrt{3}b\)

\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)

\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)

\(\Leftrightarrow2x^2-4x+2=0\)

\(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
16 tháng 12 2020 lúc 10:44

Bài 2:

Đặt \(AB=x>0\) 

\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)

\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)

\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)

Ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)

\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)

\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)

\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)

\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)

Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)

phan thị minh anh
Xem chi tiết
Hoàng Lê Bảo Ngọc
22 tháng 9 2016 lúc 10:24

2.  A C D B

Từ B kẻ đường phân giác BD ( D thuộc AC)
Ta có : \(tan\left(\frac{\widehat{B}}{2}\right)=tan\widehat{ABD}=\frac{AD}{AB}\)

Mà theo tính chất đường phân giác : \(\frac{AD}{AB}=\frac{DC}{BC}=\frac{AD+DC}{AB+BC}=\frac{AC}{AB+BC}\)

\(\Rightarrow tan\left(\frac{\widehat{B}}{2}\right)=\frac{AC}{AB+BC}\) (đpcm)

Hoàng Lê Bảo Ngọc
22 tháng 9 2016 lúc 10:27

1/ Bạn tham khảo ở đây :)

http://olm.vn/hoi-dap/question/633787.html

nguyen minh huyen
Xem chi tiết
Võ Thị Hoài Linh
Xem chi tiết
Nguyễn Minh Nguyệt
31 tháng 3 2016 lúc 21:36

A B C M G

Vì M(1;-1) là trung điểm BC và \(G\left(\frac{2}{3};0\right)\) là trọng tâm của tam giác ABC nên \(\overrightarrow{MA}=3\overrightarrow{MG}\) từ đó tìm được A(0;2)

Vì tam giác ABC cân tại A nên \(BC\perp MA\) tức là đường thẳng BC đi qua M(1;-1), nhận \(\overrightarrow{MA}=\left(-1;3\right)\) làm vec tơ pháp tuyến.

Do đó đường thẳng BC có phương trình  \(-1\left(x-1\right)+3\left(y+1\right)=0\)

                                                           hay  \(-x+3y+4=0\)

Do tam giác ABC vuông tại A nên MB=MC=MA=\(\sqrt{10}\)

Suy ra B, C nằm trên đường tròn \(\left(x-1\right)^2+\left(y+1\right)^2=10\)

Từ đó tọa độ B, C là nghiệm của hệ phương trình 

\(\begin{cases}-x+3y+4=0\\\left(x-1\right)^2+\left(y+1\right)^2=10\end{cases}\)

Giải hệ phương trình thu được (x;y) = (4;0) và (x;y) = (-2;2)

Vậy A(0;2), B(4; 0), C(-2;-2)

Trần Thị Quỳnh Trâm
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 10:38

Gọi C(x;y) \(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x+2}{3}\\y_G=\dfrac{y-6}{3}\end{matrix}\right.\) \(\Rightarrow3\left(\dfrac{x+2}{3}\right)-\dfrac{y-6}{3}+1=0\)

\(\Leftrightarrow3x-y+15=0\Rightarrow y=3x+15\Rightarrow C\left(x;3x+15\right)\)

\(S_{ABC}=\dfrac{1}{2}\left|\left(x_B-x_A\right)\left(y_C-y_A\right)-\left(x_C-x_A\right)\left(y_B-y_A\right)\right|\)

\(\Leftrightarrow3=\dfrac{1}{2}\left|-2\left(3x+19\right)-2\left(x-2\right)\right|\)

\(\Rightarrow x=...\)

Lê Phương Nhung
Xem chi tiết
nguyen minh huyen
Xem chi tiết
bangtan soydean smile su...
16 tháng 4 2020 lúc 20:06

hông biết

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 8 2019 lúc 9:57

Đáp án A

phương thảo nguyễn thị
Xem chi tiết