Ôn tập chương III

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kuramajiva

Bài 1: Giải phương trình sau: \(x^2-3x+1=-\frac{\sqrt{3}}{3}\sqrt{x^4+x^2+1}\)

Bài 2: Cho tam giác ABC vuông tại A. G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC=a, và góc giữa hai véctơ \(\overrightarrow{GB}\) và \(\overrightarrow{GD}\) nhỏ nhất.

Nguyễn Việt Lâm
15 tháng 12 2020 lúc 22:17

D là điểm nào bạn?

Nguyễn Việt Lâm
16 tháng 12 2020 lúc 10:28

1.

\(\Leftrightarrow x^2-3x+1+\dfrac{\sqrt{3}}{3}\sqrt{\left(x^2+x+1\right)\left(x^2-x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2b^2-a^2+\dfrac{\sqrt{3}}{3}ab=0\)

\(\Leftrightarrow\left(\sqrt{3}b-a\right)\left(2b+\sqrt{3}a\right)=0\)

\(\Leftrightarrow a=\sqrt{3}b\)

\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}.\sqrt{x^2-x+1}\)

\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)

\(\Leftrightarrow2x^2-4x+2=0\)

\(\Leftrightarrow x=1\)

Nguyễn Việt Lâm
16 tháng 12 2020 lúc 10:44

Bài 2:

Đặt \(AB=x>0\) 

\(AG=\dfrac{1}{2}BC=\dfrac{1}{2}\sqrt{a^2+x^2}\)

\(CG=\dfrac{2}{3}\sqrt{\left(\dfrac{AB}{2}\right)^2+AC^2}=\dfrac{2}{3}\sqrt{\dfrac{x^2}{4}+a^2}\)

\(BG=\dfrac{2}{3}\sqrt{AB^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{2}{3}\sqrt{x^2+\dfrac{a^2}{4}}\)

Ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Leftrightarrow\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{AG}\)

\(\Leftrightarrow GB^2+GC^2+2GB.GC.cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=AG^2\)

\(\Leftrightarrow cos\left(\overrightarrow{GB};\overrightarrow{GC}\right)=\dfrac{AG^2-BG^2-CG^2}{2GB.GC}\)

\(=\dfrac{\dfrac{a^2+x^2}{4}-\left[\dfrac{4}{9}\left(\dfrac{x^2}{4}+a^2\right)+\dfrac{4}{9}\left(\dfrac{a^2}{4}+x^2\right)\right]}{\dfrac{2}{9}\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\)

\(=-\dfrac{11}{4}.\dfrac{x^2+a^2}{2\sqrt{\left(a^2+4x^2\right)\left(x^2+4a^2\right)}}\le-\dfrac{11}{4}.\dfrac{x^2+a^2}{5\left(x^2+a^2\right)}=-\dfrac{11}{20}\)

Dấu "=" xảy ra khi \(a=x\Leftrightarrow AB=a\)


Các câu hỏi tương tự
Hương Phạm
Xem chi tiết
Nguyễn Tấn An
Xem chi tiết
Hằng Dương Thị
Xem chi tiết
Nguyễn Thị Thu Dung
Xem chi tiết
Hương Phạm
Xem chi tiết
Hoaa
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Linh Bui
Xem chi tiết
Hằng Dương Thị
Xem chi tiết