cho 3 số dương a,b,c thỏa mãn ab+bc+ca=abc. CMR;
\(\frac{a^2}{a+bc}+\frac{b^2}{b+ca}+\frac{c^2}{c+ba}>=\frac{a+b+c}{4}\)
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
cho các số thực dương a,b,c thỏa mãn abc=1 .CMR
1/2+a+ab +1/2+b+bc +1/2+c+ca _<3/4
cho số thực dương a,b,c thỏa mãn abc=1.CMR: (ab/2a+b+3ab)+(bc/2b+c+3bc)+(ca/2c+a+3ca)</=(1/2)
cho các số thực a, b , c thỏa mãn a+b+c >0; ab+bc+ca>0 và abc>0, CMR a,b,c là các số dương
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai,
a,b,c là 3 số dương.
Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).
Vậy điều giả sử trên là sai,
Do đó a,b,c là 3 số dương.
Cho các số thực dương a,b,c thỏa mãn ab + bc+ ca= abc. CMR
\(\left(a+b+c\right)\left(\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}\right)\le\frac{9}{4}\)
Đặt: \(M=\frac{1}{a+bc}+\frac{1}{b+ca}+\frac{1}{c+ab}=\Sigma_{cyc}\frac{a}{a^2+ab+bc+ca}\)
\(\Rightarrow M.\left(a+b+c\right)=3-\Sigma_{cyc}\frac{bc}{a^2+ab+bc+ca}\)
Đến đây t cần chứng minh:
\(\frac{bc}{a^2+ab+bc+ca}+\frac{ca}{b^2+ab+bc+ca}+\frac{ab}{c^2+ab+bc+ca}\ge\frac{3}{4}\) (*)
Từ điều kiện ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\left(x,y,z>0\right)\)
\(\Rightarrow x+y+z=1\)
(*) \(\Leftrightarrow\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{y^2}{\left(x+y\right)\left(y+z\right)}+\frac{z^2}{\left(y+z\right)\left(z+x\right)}\ge\frac{3}{4}\)
Theo Cô-si: \(\frac{x^2}{\left(x+y\right)\left(z+x\right)}+\frac{9}{16}\left(x+y\right)\left(z+x\right)\ge\frac{3}{2}x\)
Nhứng phần kia tương tự
\(\Rightarrow\Sigma_{cyc}\frac{x^2}{\left(x+y\right)\left(z+x\right)}\ge\frac{3}{2}\left(x+y+z\right)-\frac{9}{16}\left[\left(x+y+z\right)^2+\left(xy+yz+zx\right)\right]\ge\frac{3}{4}\)
Lần trước làm không đúng hy vọng bây giờ gỡ lại được
nub
Bạn suy ra dòng 8 mk chưa hiểu, giải kĩ cho mk đc ko
À hiểu r nha bạn,
Bài làm thật xuất sắc!
cho a,b,c là số thực dương thỏa mãn ab+bc+ac=abc
CMR: \(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}>\sqrt{3}\)
Hình như đề bài có vấn đề : thừa đk ab + bc + ac = abc
ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\)
Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)
\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)
Nếu thay dấu > thành >= thì ta có cách giải khác
cho a,b,c là các số thực dương thỏa mãn abc=1.CMR:
\(\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\ge\frac{3}{2}\)
Cho 3 số a, b, c thỏa mãn: abc=1 và \(a^3>36\). CMR: \(\dfrac{a^2}{3}+b^2+c^2>ab+bc+ca\)
Bạn học delta chưa nhỉ, HSG chắc chắn là học rồi:vv
cho a;b;c là các số thực dương thỏa mãn abc=1.CMR:
\(a^3+b^3+c^3+4\left(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}\right)\ge9\)
bđt phụ sai mà cũng ko đc chuẩn hóa
\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)
tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)
=>Thắng Nguyễn :cm theo cách đó sai
SOS cho khỏe :v
WLOG \(a\ge b\ge c\)
Áp dụng BĐT AM-GM ta có:
\(b^2Σ_{cyc}\left(a^3+\frac{4ab}{a^2+b^2}-3\right)=b^2\left(Σ_{cyc}(a^3-abc)-2Σ_{cyc}\left(1-\frac{2ab}{a^2+b^2}\right)\right)\)
\(=b^2Σ_{cyc}(a-b)^2\left(\frac{a+b+c}{2}-\frac{2}{a^2+b^2}\right)=\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)(a^2+b^2)-4abc)}{a^2+b^2}\)
\(\ge\frac{b^2}{2}Σ_{cyc}\frac{(a-b)^2((a+b+c)2ab-4abc)}{a^2+b^2}=b^2Σ_{cyc}\frac{(a-b)^2ab(a+b-c)}{a^2+b^2}\)
\(\ge\frac{b^2(a-c)^2ac(a+c-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b+c-a)}{b^2+c^2}\)
\(\ge\frac{a^2(b-c)^2ac(a-b)}{a^2+c^2}+\frac{b^2(b-c)^2bc(b-a)}{b^2+c^2}\)
\(=\frac{abc^3(a+b)(b-c)^2(a-b)^2}{(a^2+c^2)(b^2+c^2)}\ge0\) (đúng :v)