Cho hình chóp S.ABCD có tam giác SAB cân tại S, đáy là hình vuông cạnh a, (SC;(ABCD))=45°. Tính
a) d(A;(SCD))
b) d(M;(SCD)) với M là trung điểm của SA
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 . Góc giữa đường thẳng SC và mặt phẳng đáy(ABCD) là
A. 30°
B. 45°
C. 60°
D. 120°
Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết thể tích cho hình chóp S.ABCD là a 3 15 6 Góc giữa đường thẳng SC và mặt phẳng đáy (ABCD) là
A. 30 0
B. 45 0
C. 60 0
D. 120 0
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng đáy bằng Thể tích khối chóp S.ABCD bằng
A. a 3 3 12
B. a 3 3 9
C. a 3 5 24
D. a 3 5 6
Chọn đáp án D

Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D
Suy ra ![]()
⇒ S H C vuông cân tại H.
Do ∆ B H C vuông tại H nên
⇒ S H = H C = a 5 2
Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t là
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 o . Thể tích khối chóp S.ABCD bằng:
A. a 3 3 12
B. a 3 3 9
C. a 3 5 24
D. a 3 5 6
Chọn D

Gọi H là trung điểm của AB.
![]()
![]()
Do đó:
![]()
Xét tam giác vuông BHC:

Xét tam giác vuông SHC:

Suy ra:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy, góc giữa đường thẳng SC và mặt phẳng đáy bằng 45 ° . Thể tích khối chóp S.ABCD bằng:
A. a 3 3 12
B. a 3 3 9
C. a 3 5 24
D. a 3 5 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh, tam giác SAB cân tại S. SA=SB=2a, (SAB) \(\perp\) (ABCD)
a, Tính (SD,(ABCD))
b, (SH, (SCD)) với H là trung điểm của
c, (SC, (SAB))
d, (SA, (SBC))
Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, góc = 450, tam giác SAB là tam giác vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích của hình chóp S.ABCD là:
A. a 3 2
B. a 3 6
C. a 3 2 2
D. a 3 2 12
Cho khối chóp S.ABCD có ABCD là hình vuông cạnh 3a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABCD biết góc giữa SC và (ABCD) bằng 60 ° .
A. V S . A B C D = 18 a 3 15
B. V S . A B C D = 18 a 3 3
C. V s . A B C D = 9 a 3 15 2
D. V S . A B C D = 9 a 3 3
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC
A. a 3 3 .
B. a 5 5 .
C. 2 a 3 3 .
D. 2 a 5 5 .
Đáp án D
Phương pháp giải: Dựng hình, xác định khoảng cách giữa hai đường thẳng thông qua mặt phẳng song song với đường thẳng
Lời giải:


Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, mặt bên SAB là tam giác vuông cân tại S và nằm trên mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng AB và SC.

![]()

