Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Cầm
Xem chi tiết
Edogawa Conan
11 tháng 7 2019 lúc 21:39

A B C E D 1 2 1 2 1 1

CM: Do BE là tia p/giác của góc B => \(\widehat{B_1}=\widehat{B_2}=\widehat{\frac{B}{2}}\)

Do CD là tia p/giác của góc C => \(\widehat{C_1}=\widehat{C_2}=\widehat{\frac{C}{2}}\)

Mà \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> \(\widehat{C_1}=\widehat{B_1}\)

Xét t/giác ACD và t/giác ABE

có: \(\widehat{A}\) : chung

 AC = AB (gt)

  \(\widehat{C_1}=\widehat{B_1}\)

=> t/giác ACD = t/giác ABE(g.c.g)

=> AD = AE (2 cạnh t/ứng)

=> t/giác ADE cân tại A 

=> \(\widehat{D_1}=\widehat{E_1}=\frac{180^0-\widehat{A}}{2}\) (1)

Ta có: t/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

từ (1) và (2) => \(\widehat{D_1}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> DE // BC (Đpcm)

Otohime
Xem chi tiết
Huỳnh Quang Sang
30 tháng 3 2020 lúc 10:40

A A A B B B C C C D D D E E E 1 2 1 2 1

a) BD và CE theo thứ tự là phân giác của góc B và góc C (gt) nên \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B},\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)

mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của \(\Delta\)cân ABC)

do đó \(\widehat{B_1}=\widehat{C_2}\)

\(\widehat{A}\)chung

=> \(\Delta\)ABD = \(\Delta\)ACE(g.c.g)

=> AD = AE(hai cạnh tương ứng)

=> \(\Delta\)ADE cân ở A

b) \(\Delta\)AED cân tại đỉnh A nên \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)

\(\Delta\)ABC cân tại đỉnh A nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\)

Vậy DE // BC(hai góc so le trong) mà \(\widehat{B_1}=\widehat{B_2}\), do đó \(\widehat{A}=60^0\)\(\widehat{D_1}=\widehat{B_2}\)=> \(\Delta\)BED cân ở đỉnh E,do đó BE = ED(3)

c) \(\Delta\)AEC cân tại đỉnh A nên \(\widehat{AEC}=\widehat{ACE}=\frac{180^0-\widehat{A}}{2}\)

\(\Delta\)ABD cân tại đỉnh A nên \(\widehat{ABD}=\widehat{ADB}=\frac{180^0-\widehat{A}}{2}\)

=> \(\widehat{AEC}=\widehat{ABD}\)

=> CE // BD(hai góc so le trong) 

Mà \(\widehat{C_1}=\widehat{C_2}\),do đó \(\widehat{A}=60^0,\widehat{D_1}=\widehat{C_2}\)

=> \(\Delta\)CED cân ở đỉnh D nên ED = DC(4)

Từ (3) và (4) => BE = ED = DC

Khách vãng lai đã xóa
Thảo Vy Nguyễn
Xem chi tiết
Thu Thuỷ Nguyễn
Xem chi tiết
Nguyễn Bảo Ngân
Xem chi tiết
Bùi Vương TP (Hacker Nin...
27 tháng 12 2018 lúc 20:41

ta có DE//AB

mà góc KAD =góc EAD(tia p/g góc A)

=> góc KAD=góc EAD (hai  góc so le trong )

xét tam giác EAD có 

góc EAD=góc EDA(hai góc ở đáy bằng nhau )

vậy tam giác EAD CÂN TẠI E

Tôn Hà Vy
Xem chi tiết
Con Gà Gánk Team
Xem chi tiết
Alice
4 tháng 8 2023 lúc 9:43

\(\text{a)}\) Tam giác \(\text{ABC}\) cân tại \(\text{A}\) nên\(\text{ ABC = ACB}\) (t/c tam giác cân)

\(\Rightarrow\) \(\dfrac{\text{ABC}}{\text{2}}\) \(\text{=}\)  \(\dfrac{\text{ACB}}{\text{2}}\)

Mà \(\text{ABD = CBD =}\) \(\dfrac{\text{ABC}}{\text{2}}\)

\(\text{ACE = BCE = }\dfrac{\text{ACB}}{\text{2}}\)

Nên \(\text{ABD = CBD = ACE = BCE}\)

Xét \(\Delta\text{EBC}\) và \(\Delta\text{DCB}\) có 

\(\widehat{\text{EBC}}=\widehat{\text{DCB}}\text{(cmt)}\)

\(\text{BC}\) chung

\(\widehat{\text{ECB}}=\widehat{\text{DBC }}\text{(cmt)}\)

\(\Rightarrow\Delta\text{EBC}=\Delta\text{DCB}\text{(g.c.g)}\)

\(\text{⇒}\) \(\text{BE = CD}\) (\(\text{2}\) cạnh tương ứng)

Mà \(\text{AB = AC (gt)}\) nên \(\text{AB - BE = AC - CD}\)

\(\text{⇒}\) \(\text{AE = AD}\)

\(\text{⇒}\) \(\Delta\text{AED}\) cân tại \(\text{A}\) \(\text{(đpcm)}\)

\(\text{b)}\) \(\Delta\text{ABC}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{BAC}}\) \(\text{= 180}^{\text{o}}\)  \(\text{- 2.ABC (1)}\)

\(\Delta\text{EAD}\) cân tại \(\text{A}\) \(\text{⇒}\) \(\widehat{\text{EAD}}\) \(\text{= 180}^{\text{o}}\)\(\text{- 2.AED (2)}\)

Từ \(\text{(1)}\) và \(\text{(2)}\) \(\text{⇒}\) góc \(\text{ABC = AED}\)

Mà \(\widehat{\text{ABC}}\) và \(\widehat{\text{AED}}\) là \(\text{2}\) góc ở vị trí đồng vị nên \(\text{ED // BC (đpcm)}\)

Học Tập
Xem chi tiết
phạm thị kim yến
5 tháng 7 2017 lúc 8:25

A B C D E F

A B C D E

nguyễn thị khánh huyền
Xem chi tiết
Game Master VN
9 tháng 7 2017 lúc 20:19

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

Nguyễn Thùy Linh
11 tháng 7 2017 lúc 9:53

A E D B C

a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:

    C = B,    CB chung,   EBC = DCB  \(\Rightarrow\)   \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)EC = DB

      \(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.

b) Ta có:

     C = \(\frac{180^o-A}{2}\),    E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )

c) Vì \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)BE = DC

❊ Linh ♁ Cute ღ
16 tháng 9 2018 lúc 22:21

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

hình tự vẽ ạ