Cho tam giác ABC có H là trực tâm. CMR:
\(\frac{\left(HA+HB+HC\right)^2}{AB^2+BC^2+CA^2}\le1\)
Cho tam giác ABC nhọn với trực tâm H. CMR:
a) HA + HB + HC < AB+ AC
b) HA +HB + HC < 2/3(AB +BC + CA)
Câu hỏi của Phạm Trung Kiên - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Cho tam giác ABC nhọn nhận H làm trực tâm. Chứng minh ta có bất đẳng thức:
\(HA+HB+HC
Cho tam giác ABC nhọn, các đường cao AA', BB', CC'', H là trực tâm.
a) Tính tổng \(\frac{HA'}{AA'}+\frac{Hb'}{BB'}+\frac{HC'}{CC'}\)
b) gọi AI là phân giác của tam giác ABC, IM, IN thứ tự là phân giác của góc AIC và ATB. Cmr: AN.BI.CM=BN.IC.AM
c) cmr: \(\frac{\left(AB+BC+CA\right)^2}{AA'^2=BB'^2+CC'^2}\ge4\)
a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)
Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)
\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)
b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)
mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)
\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)
vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA giao điểm Cx tại I
\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật
\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)
Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC
\(\Rightarrow\)BD2 \(\le\)( BC + CD )2
\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2
\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2
\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2
\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2 . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC
tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC
4AA'2 \(\le\)( AB + AC )2 - BC2 Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC
Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)
\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)
Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng:
a) HA + HB + HC < AB + AC
b) HA + HB + HC < \(\dfrac{2}{3}\) (AB + BC + CA)
a) Ta có: HA = 2RcosA HB = 2RcosB HC = 2RcosC AB = 2RsinC AC = 2RsinB Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2RsinC + 2RsinB Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < sinC + sinB Áp dụng bất đẳng thức tam giác, ta có: sinC + sinB > sin(A + B) = sinCOSA + cosCSINA = cosA + cosB Vậy ta có: cosA + cosB + cosC < sinC + sinB Do đó, ta có HA + HB + HC < AB + AC. b) Ta có: AB + BC + CA = 2R(sinA + sinB + sinC) = 2R(sinA + sinB + sin(A + B)) = 2R(2sin(A + B/2)cos(A - B/2) + sin(A + B)) = 4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B) Vậy ta cần chứng minh: 2RcosA + 2RcosB + 2RcosC < 2332 (4Rsin(A + B/2)cos(A - B/2) + 2Rsin(A + B)) Chia cả 2 vế cho 2R, ta có: cosA + cosB + cosC < 1166(2sin(A + B/2)cos(A - B/2) + sin(A + B)) Áp dụng bất đẳng thức tam giác, ta có: sin(A + B) > sinC = sin(A + B/2 + B/2) = sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) Vậy ta có: 2sin(A + B/2)cos(A - B/2) + sin(A + B) < 2sin(A + B/2)cos(A - B/2) + sin(A + B/2)cos(B/2) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + cos(A + B/2)sin(B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2)) + sin(B/2)cos(A + B/2) = sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2)) Vậy ta có: cosA + cosB + cosC < 1166(2sin(A + B/2)cos(A - B/2) + sin(A + B)) < 1166(sin(A + B/2)(2cos(A - B/2) + cos(B/2) + cos(A + B/2))) Do đó, ta có HA + HB + HC < 2332(AB + BC + CA).
Gọi H là trực tâm tam giác ABC CMR :
a, HA + HB + HC < AB + AC
b, HA + HB + HC < 2/3 ( AB + AC + BC )
Gọi H là trực tâm của tam giác nhọn ABC. Chứng minh rằng:
a) HA + HB + HC < AB + AC
b) HA + HB + HC <\(\frac{2}{3}\)(AB + BC + CA )
Cho tam giác ABC nhọn, trực tâm H. CMR:
a. \(AB+AC>HA+HB+HC\)
b.\(AB+AC+BC>\frac{3}{2}\times\left(HA+HB+HC\right)\)
Giúp mik nha mọi người. mik cần rất gấp. Cảm ơn các bn nhìu
a) Kẻ HD//AB, HE//AC
−>AD=HE;AE=AH
Theo BĐT trong tam giác :
AH < AE+HE = AE+AD
xét ΔHDC vuông tại H :HC<DC
ΔBHE vuông tại H : HB<BE
−> HA+HB+HC < AE+AD+BE+DC = AB+AC
chứng minh tương tự:
HA+HB+HC<AB+BC
HA+HB+HC<AC+BC
-> có : 3(HA+HB+HC)<2(AB+AC+BC)
-> ( HA + HB + HC ) x \(\frac{3}{2}\) < AB + AC + BC
bây giờ mik làm có muộn lắm ko bạn???
Cho tam giác ABC nhọn, trức tâm H .CMR :
a, HA + HB + HB < AB + AC
b, HA + HB + HC < 2/3 ( AB + BC + CA )
Cho tam giác ABC có H là trực tâm. CMR : AB^2 + HC^2 = BC^2 + HA^2 = CA^2 + BH^2
AI LÀM NHANH NHẤT MÌNH LIKE CHO