Cho \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\) biết a+b+c \(\ne\)0 . Tìm giá trị mỗi tỉ số đó
cho \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) biết a + b + c \(\ne\)0
tinh giá trị của mỗi tỉ số
tìm a,b,c
a/b+c=b/a+c=c/a+b
ta có : a/b+c=b/a+c=c/a+b
=a+b+c/(b+c)+(a+c)+(b+a)
=a+b+c/a+c+b+c+b+a
=a+b+c/2a+2b+2c
=a+b+c/2.(a+b+c)
=1/2
+, a/b+c=1/2 => a=1 ; b+c=2 1
+, b/a+c=1/2 => b=1 ; a+c=2 2
+, c/a+b=1/2=> c=1 ; a+b=2 3
Từ 1 ; 2 và 3 => a=b=c=1
Vậy a=b=c=1
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Ta có : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(=\frac{a+b+c}{\left(b+c\right)+\left(a+c\right)+\left(b+a\right)}\)
\(=\frac{a+b+c}{a+c+b+c+b+a}\)
\(=\frac{a+b+c}{2a+2b+2c}\)
\(=\frac{a+b+c}{2.\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
Mà \(\frac{a}{b+c}=\frac{1}{2}\Rightarrow a=1;b+c=2\)
\(\frac{b}{a+c}=\frac{1}{2}\Rightarrow b=1;a+c=2\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow c=1;a+b=2\)
Từ 1 , 2 , 3 \(\rightarrow\) a = b = c = 1
\(\Rightarrow\) a = b = c = 1
Cho ba tỉ số bằng nhau :\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)tìm giá trị của mỗi tỉ số đó ?
Nếu : \(a+b+c\ne0\) thì theo tính chất dãy tỉ số bằng nhau :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Nếu : a+b+c = 0 thì b+c = - a ; c+a = - b ; a+b= - c nên mỗi tỉ số : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)Tìm giá trị cuả mỗi tỉ số đó
Ta có:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy giá trị của mỗi tỉ số là:\(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{a}{a+b}.\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{1}{2}\)
Xét 2 trường hợp: Nếu a+b+c = 0
Và Nếu a+b+c = \(\frac{1}{2}\)
Ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\),Xét 2 TH sau:
+Nếu a+b+c \(\ne\) 0 thì theo t/c dãy tỉ số=nhau:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{\left(a+a\right)+\left(b+b\right)+\left(c+c\right)}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
+Nếu a+b+c = 0 thì a+b=-c ; b+c=-a;c+a=-b
\(=>\frac{a}{b+c}=\frac{a}{-a}=1;\frac{b}{a+c}=\frac{b}{-b}=-1;\frac{c}{a+b}=\frac{c}{-c}=-1\)
\(=>\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=-1\)
Vậy............
Cho: \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\)(a, b, c >0). Tìm giá trị mỗi tỉ số.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2c+b}=\frac{a+b+c}{2b+c+2c+a+2c+b}\)\(=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy ...
Cho ba tỉ số bằng nhau là : \(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\) . Tìm giá trị của mỗi tỉ số đó
ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b++c\right)}=\frac{1}{2}\)
Vậy giá trị mỗi tỉ số là \(\frac{1}{2}\)
ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
vì =>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
Cho 3 tỉ số bằng nhau:
\(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{b+a}\)
Tìm giá trị của mỗi tỉ số đó
1./ Nếu a + b + c = 0
\(\Rightarrow a=-\left(b+c\right)\Rightarrow\frac{a}{b+c}=-1\)
=> Giá trị các tỷ số đó = -1.
2./ Nếu a + b + c khác 0 thì:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Giá trị các tỷ số đó = 1/2
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{b+a}\)
\(=\frac{a-b-c}{b+c-a-c-b-a}\)
\(=\frac{a-b-c}{-2a}\)
\(=>\frac{a}{b+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{b}{a+c}=\frac{a-b-c}{-2a}\)
\(=>\frac{c}{b+a}=\frac{a-b-c}{-2a}\)
1) cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c \(\ne\)0. Chứng minh rằng a=b=c
2) cho \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}\left(a,b,c>0\right).\)Tính giá trị của mỗi tỉ số.
3) cho \(\frac{a}{b}=\frac{b-2011c}{c}=\frac{2012c}{a}\) và a+b+c\(\ne\)0. Chứng minh a=b
1/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b=c\)
2/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{1}{3}\)
3/ áp dụng tính chất dãy tỉ số bằng nhau, ta có \(\frac{a}{b}=\frac{b-2011c}{c}=\frac{2012c}{a}=\frac{a+b+c}{b+c+a}=1=>a=b\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)
Biết a+b+c khác 0
Tính giá trị của mỗi tỉ số
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+c+a}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{1}{2}\)
Cho 3 tỉ số bằng nhau \(\frac{a}{b+c};\frac{b}{a+c};\frac{c}{a+b}\)
Biết a+b+c khác 0 . Tính giá trị của mỗi tỉ số
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)= \(\frac{1}{2}\)
=> \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{1}{2}\)
T i c h cho mình nha