Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trọng An Nam
Xem chi tiết
ST
30 tháng 7 2018 lúc 10:13

\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)

\(=\left(1-\frac{1}{100}\right)-\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)\)

\(=\frac{99}{100}-\frac{1}{2}\cdot\frac{5049}{10100}=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)

✪SKTT1 NTD✪
Xem chi tiết
Hoàng Thế Hải
20 tháng 10 2018 lúc 22:00

Lời giải: Sử dụng hằng đẳng thức \(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)  ta có:

Sn=\(\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{2\times3}\right]+\frac{1}{2}\left[\frac{1}{2\times3}-\frac{1}{3\times4}\right]+...\)\(+\frac{1}{2}\left[\frac{1}{\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

\(=\frac{1}{2}\left[\frac{1}{1\times2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]=\frac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)

Yume Nguyễn
20 tháng 10 2018 lúc 22:21

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{n.\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

\(=\frac{1}{2}-\frac{1}{\left(n+1\right).\left(n+2\right)}\)

Việt Nam vô địch
Xem chi tiết
Phạm Tuấn Đạt
24 tháng 11 2018 lúc 21:10

\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)

\(S=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{24.25}\right)\)

\(S=\frac{1}{4}-\frac{1}{24.50}\)

Khánh Vy
24 tháng 11 2018 lúc 21:24

Dễ thấy với mọi số tự nhiên n > 1 , ta có :

\(\frac{2}{\left(n-1\right).n.\left(n+1\right)}=\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right).n.\left(n+1\right)}=\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}\)

Sử dụng  hệ thức trên cho từng số hạng trong tổng sau :

\(2S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{\left(n-1\right).n.\left(n+1\right)}+\frac{2}{23.24.25}\)

     \(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{\left(n-1\right).n}-\frac{1}{n.\left(n+1\right)}+...+\frac{1}{23.24}-\frac{1}{24.25}\)

Để ý rằng trong vế phải của hệ thức trên , trừ 2 số hạng đầu và cuối , các số hạng còn lại tạo thành từng cặp đối nhau.

Do đó , có thể rút gọn : 

\(2S=\frac{1}{1.2}-\frac{2}{24.25}=\frac{299}{600}\)

Vậy , ta được \(S=\frac{299}{600}\)

KHANH QUYNH MAI PHAM
Xem chi tiết

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\\ =\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)\)

\(=\frac{1}{2}.\frac{612}{1225}\\ =\frac{306}{1225}\)(mà đây là toán 6 mà :V)

GT 6916
Xem chi tiết
Nobi Nobita
Xem chi tiết
Kiệt ღ ๖ۣۜLý๖ۣۜ
24 tháng 6 2016 lúc 20:31

Ta có nhận xét:

\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng công thức trên vào bài tập, ta có:

B=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

Vậy \(B=\frac{185}{741}\)

Nguyễn Thị Anh
24 tháng 6 2016 lúc 20:33

Hỏi đáp Toán

Ngô Châu Bảo Oanh
Xem chi tiết
Phạm Tuấn Kiệt
10 tháng 6 2016 lúc 15:44

Ta có nhận xét:

\(\frac{2}{n.\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

Áp dụng công thức trên vào bài tập, ta có:

\(\Rightarrow B=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{1482}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

Nguyễn Trần An Thanh
10 tháng 6 2016 lúc 15:47

 \(\Rightarrow B=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{3}{1.2.3}-\frac{1}{1.2.3}+\frac{4}{2.3.4}-\frac{2}{2.3.4}+\frac{5}{3.4.5}-\frac{3}{3.4.5}+...+\frac{39}{37.38.39}-\frac{37}{37.38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(\Rightarrow B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{38.29}\right)\)

\(\Rightarrow B=\frac{1}{2}.\frac{370}{741}=\frac{185}{741}\)

 

Cao Hoàng Minh Nguyệt
10 tháng 6 2016 lúc 15:38

Công thức nè :

1/2(1/1.2-1/38.39)=185/714

Mk chỉ bt z thui à!

hi
Xem chi tiết
Đặng Minh Triều
14 tháng 6 2016 lúc 9:38

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}...+\frac{2}{37.38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{38.39}\right)=\frac{185}{741}\)

Nguyễn Hoàng Nam
14 tháng 6 2016 lúc 8:54

3765942

hi
14 tháng 6 2016 lúc 9:09

cách làm?

Hồ Trúc
Xem chi tiết
Lightning Farron
10 tháng 8 2016 lúc 22:12

\(2S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(2S=\frac{1}{2}-\frac{1}{9900}\)

\(2S=\frac{4949}{9900}\)

\(S=\frac{4949}{19800}\)

Vương Hàn
11 tháng 8 2016 lúc 8:55

Ta xét : \(\frac{1}{1.2}-\frac{1}{2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{2}{2.3.4}\)

...

\(\frac{1}{98.99}-\frac{1}{99.100}=\frac{2}{98.99.100}\)

Ta có : 2S = \(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

=> 2S = \(\frac{1}{1.2}-\frac{1}{99.100}\)

=> 2S = \(\frac{4949}{9900}\)

=> S = \(\frac{4949}{19800}\)

Nguyễn Kim Thành
10 tháng 3 2017 lúc 14:15

2S=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{98.99.100}\)

2S= \(1-\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)2S= 1- \(\dfrac{1}{100}\)

2S= \(\dfrac{99}{100}\)

S= \(\dfrac{99}{100}.\dfrac{1}{2}\)

S=\(\dfrac{198}{100}\)