Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Lê Hồng Thái
Xem chi tiết

Giải:

N=1/31+1/32+...+1/60

Có 30 phân số; chia 3 nhóm

N=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)

N>(1/40+1/40+...+1/40)+(1/50+...+1/50)+(1/60+...+1/60)

N>1/4+1/5+1/5

N>37/60>36/60=3/5

⇒N>3/5

Bạn tự làm nốt nhé tương tự như thế thôi!

Làm tiếp:

N<(1/30+1/30+...+1/30)+(1/40+...+1/40)+(1/50+...+1/50)

N<1/3+1/4+1/5

N<47/60<48/60=4/5

⇒N<4/5

mà 3/5<4/5

⇒3/5<N<4/5

Vậy 3/5<N<4/5 

Chúc bạn học tốt!

Khổng Minh Ái Châu
Xem chi tiết
Khổng Minh Ái Châu
30 tháng 3 2023 lúc 20:11

ai trả lời đúng mình tặng coin

 

Berry2k12
6 tháng 5 lúc 21:30

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

Lâm Hồng Kiên
Xem chi tiết
Nguyễn Minh Trang
16 tháng 4 2022 lúc 2:21

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

 

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5 Chúc bạn học tốt !

Minh Hiếu
16 tháng 4 2022 lúc 5:29

Tham khảo:

 
bảo
Xem chi tiết
Carthrine
10 tháng 3 2016 lúc 19:39

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự ta có : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Mà khi đó ta thấy: (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Do : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

Trần Hải Băng
Xem chi tiết
Trần Hải Băng
Xem chi tiết
Akai Haruma
19 tháng 10 lúc 16:28

Lời giải:

$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$

$> \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{36}{60}=\frac{3}{5}$

Mặt khác: 

$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$

$< \frac{10}{30}+\frac{10}{40}+\frac{1}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}$

talasuperman3
Xem chi tiết
Đặng Phương Thảo
14 tháng 7 2015 lúc 21:53

S = (1 / 31 + ... + 1 / 40) + (1 / 41 + ... + 1/ 50) + (1 / 51 + ... + 1 / 60) < 
10 / 31 + 10 / 41 + 10 / 51 < 10 / 30 + 10 / 40 + 10 / 50 = 1 / 3 + 1 / 4 + 1 / 5 = 
7 / 12 + 1 / 5 < 3 / 5 + 1 / 5 = 4 / 5 
Tương tự:
S > 10 / 40 + 10 / 50 + 10 / 60 = 1 / 4 + 1 / 5 + 1 / 6 = 5 / 12 + 1 / 5 > 2 / 5 + 1 / 5 = 3 / 5 
=> 3 / 5 < S < 4 / 5

Anh Nguyễn Việt
Xem chi tiết
Trần Sỹ Nguyên
Xem chi tiết