Cho a/b=b/c=c/a va a+b+c khac 0 so sahs a,b,c
Cho 3 so a,b,c khac 0 va doi mot khac nhau thoa man a^2.(b+c)=b^2.(a+c)=2015 Tinh c^2.(a+b)
cho 3 so a,b,c khac thuoc Q khac nhau tung doi mot va khac 0 thoa man a/b+c=b/a+c=c/a+b
Chung minh b+c/a+a+c/b+a+b/c khong phu thuoc vao cac gia tri cua a,b,c
tim 3 so a,b,c khac nhau va khac 0 thoa man : a/(b+c) = b/(a+c) = c/(a+b)
Cho cac chu so a,b,c,khac nhau va khac 0.hay lap cac so co 3 chu so khac nhau va tinh nhanh tong vua lap biet a+b+c=10
Các số đó là : 721 ; 712 ; 217 ; 271 ; 127 ; 172 ; 631 ; 613 ; 316 ; 361 ; 163 ; 136 ; 541 ; 514 ; 523 ; 532 ; 145 ; 154 ;235 ; 253 ; 415 ; 451 ; 325 ; 352 . Tổng thì tự tính đi .
-Các chữ số khác nhau lập từ: ab, ac,ba, bc, ca, cb
-Tổng:
ab+ ac+ba+ bc+ ca+ cb
=(10*a+10*a+a+a)+ (10*b+10*b+b+b)+(10*c+10....22*(a+b+c)
=22*8=176
Vậy: 3 chữ số cần tìm là 176
Học tốt!
cho a,b,c la 3 so khac 0 va a+b+c# 0
Thỏa mãn : a/b+c = b/c+a = c/a+b
Tinh gia tri bieu thuc : P = b+c/a + c+a/b + a+b/c
cho a,b,c la 3 so khac 0 va a+b+c=0 chung minh rang 1/a^2+b^2-c^2+1/b^2+c^2-a^2+1/c^2+a^2-b^2=0
cho\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) va a+b+c khac 0
a] so sanh ac so a,b,c
cho a=2017. tinh b,c
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
a=b=c=2017
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=b\); \(\frac{b}{c}=1\Rightarrow b=c\); \(\frac{c}{a}=1\Rightarrow c=a\)
Suy ra : a = b = c = 1
Nếu a = 2017 thì : b = c = 2017
A/b=b/c=c/a va a.b.c khac 0
Ap dung ting chat day ti so bang nhau ta co
A/.........=a+b+c/b+c+a=1
=)a/b=1=)a=b
b/c=1=)b=c
Mà a=b,b=c=)a=b=c(1)
Mà a=2017(2)
Tù 1và 2=)a=b=c=2017
Vay b=2017,c=2017
Cho ba so a , b, c thuoc Q khac nhau tung doi mot va khac 0 thoa man \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\). Chung minh \(\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\) khong phu thuoc vao cac so a , b, c
Cho 3 so khac nhau va khac 0 thoa man \(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}\).Khi do gia tri cua \(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Theo bài ra:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b};a\ne b\ne c;a,b,c\ne0\)
\(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(hay:\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow a=\dfrac{b+c}{2}\)
Thay \(a=\dfrac{b+c}{2}\) vào \(P\), ta có:
\(P=\dfrac{b+c}{\dfrac{b+c}{2}}+\dfrac{b+c+c}{b}+\dfrac{b+c+b}{c}\\ P=\dfrac{2\left(b+c\right)}{b+c}+\dfrac{2c+b}{b}+\dfrac{2b+c}{c}\\ P=2+\dfrac{2c}{b}+\dfrac{b}{b}+\dfrac{2b}{c}+\dfrac{c}{c}\\ P=2+\dfrac{2c}{b}+1+\dfrac{2b}{c}+1\\ P=\left(2+1+1\right)+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c+2b}{b+c}\\ P=4+\dfrac{2\left(b+c\right)}{b+c}\\ P=4+2\\ P=6\)
Vậy: \(P=6\)