Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Anh Thư
Xem chi tiết
Phạm Quang Lộc
26 tháng 7 2023 lúc 11:08

\(S=1+2+...+2^{2017}\)

\(2S=2+2^2+...+2^{2018}\)

\(2S-S=2+2^2+...+2^{2018}-1-2-...-2^{2017}\)

\(S=2^{2018}-1\)

\(S=3+3^2+...+3^{2017}\)

\(3S=3^2+3^3+...+3^{2018}\)

\(3S-S=3^2+3^3+...+3^{2018}-3-3^2-...-3^{2017}\)

\(2S=3^{2018}-3\)

\(S=\dfrac{3^{2018}-3}{2}\)

\(S=4+4^2+...+4^{2017}\)

\(4S=4^2+4^3+...+4^{2018}\)

\(4S-S=4^2+4^3+...+4^{2018}-4-4^2-...-4^{2017}\)

\(3S=4^{2018}-4\)

\(S=\dfrac{4^{2018}-4}{3}\)

\(S=5+5^2+...+5^{2017}\)

\(5S=5^2+5^3+...+5^{2018}\)

\(5S-S=5^2+5^3+...+5^{2018}-5-5^2-...-5^{2017}\)

\(4S=5^{2018}-5\)

\(S=\dfrac{5^{2018}-5}{4}\)

a) S=1+2+22+...+22017

=> 2S=2.(1+2+22+...+22017)

=>2S=2+22+23+...+22018

=>S=(2+22+23+ ..+22018) - (1+2+22+ ....+22017 )

=> S =22018-1

 

Hoàng Thu Hương
Xem chi tiết
Xyz OLM
26 tháng 10 2019 lúc 20:57

\(\frac{2017}{1+2}+\frac{2017}{1+2+3}+\frac{2017}{1+2+3+4}+...+\frac{2017}{1+2+3+4+...+2016}\)

\(=2017\times\left(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2016}\right)\)

\(=2017\times\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1008.2017}\right)\)

\(=2017\times2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{2016.2017}\right)\)

\(=4034\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right)\)

\(=4034\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)

\(=4034\times\left(\frac{1}{2}-\frac{1}{2017}\right)\)

\(=4034\times\frac{2015}{4034}\)

\(=2015\)

Khách vãng lai đã xóa
Zoro
26 tháng 10 2019 lúc 21:07
Thanks Nha
Khách vãng lai đã xóa
Lê Diệu Linh
Xem chi tiết
lê văn cầu
Xem chi tiết
Tẫn
10 tháng 5 2018 lúc 20:26

\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{5.6}\\ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\\ \)

\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{6}\)

\(\frac{1}{2}+\frac{1}{2}-\frac{1}{6}\)

\(1-\frac{1}{6}\\ \frac{5}{6}\)

k nha bn

hoàng đức hiếu
Xem chi tiết
Phan Văn Hiếu
7 tháng 10 2016 lúc 13:24

\(B=2+2^2+2^3+...+2^{2016}\)

\(2B=2^2+2^3+...+2^{2017}\)

\(B=2^{2017}-2\)

các ý khác tương tự 

ý C nhân vs 3

   D                4

  E                5

Dragon song tử
7 tháng 10 2016 lúc 15:10

3C = 3(1+3+3^2+.......+3^2017)

= 3+3^2+3^3+......+3^2018

3C - C = (3+3^2+3^3+......+3^2018) - (1+3+3^2+......+3^2017)

= 3^2018 - 1

=> C = (3^2018 - 1) : 2

còn lại tự làm nhé

nguyen thi bao tram
Xem chi tiết
nguyen thi bao tram
3 tháng 3 2019 lúc 13:56

giải đầy đủ nhé !

Vũ Tuấn Kiệt
3 tháng 3 2019 lúc 13:59

có số số hạng là : \(\frac{2019-1}{1}+1=2019\left(số\right)\)

\(S=\frac{\left(2019+1\right).2019}{2}=2039190\)

(S là tổng)

Pendragon
3 tháng 3 2019 lúc 14:04

Tổng trên có số số hạng là:

         (2019 - 1) : 1 + 1 = 2019 (số hạng)

Tổng trên là:

         (2019 + 1) x 2019 : 2 = 2039190 

                                            Đáp số: 2039190

diep do
Xem chi tiết
Phan Tùng Dương
17 tháng 4 2018 lúc 18:31

/ là j zậy

diep do
17 tháng 4 2018 lúc 18:41
Máy cái /là mình ghi phần đó bạn vì mình không biét ghi phần như thế nào
Hien Tran
Xem chi tiết
Tô Hoài An
30 tháng 6 2017 lúc 7:24

\(\left(\frac{4}{3}-\frac{2}{3}-\frac{9}{8}\right):\left(1-\frac{4}{5}\right)\)

\(=\left(\frac{2}{3}-\frac{9}{8}\right):\left(1-\frac{4}{5}\right)\)

\(=-\frac{11}{24}:\frac{1}{5}\)

\(=-\frac{55}{24}\)

chau duong phat tien
30 tháng 6 2017 lúc 7:11

-55/24

diệu anh
30 tháng 6 2017 lúc 7:12

(4/3-2/3-9/8):(1-4/5)

=-11/24:1/5

=-79/120

k cho mk nhé,bn hok tốt

Nguyễn Duy Sơn
Xem chi tiết
Trần Thị Hà Giang
6 tháng 4 2018 lúc 18:22

\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{9}{1}+\frac{8}{2}+...+\frac{1}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10-1}{1}+\frac{10-2}{2}+...+\frac{10-9}{9}\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right].x=\frac{10}{1}-1+...+\frac{10}{9}-1\)

=> \(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10-9+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}\)=  \(\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)

=>\(\left[\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right]x=10\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)

=> \(x=10\)

b) Tương tự câu a