chứng minh phương trình 22014^2015=7x^2+y^2 có nghiệm (x;y) với x,y là các số tự nhiên lẻ
chứng minh rằng phương trình sau không có nghiệm nguyên: x^2+y^2+z^2=2015
Lời giải:
Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$
Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.
Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên
$x^2+y^2+z^2=2015$
$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$
$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$
$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$
Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.
Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.
chứng minh rằng phương trình sau không có nghiệm nguyên: x^2+y^2+z^2=2015
Chứng minh rằng : Các phương trình sau có nghiệm nguyên không?
a, 3*x^2 - 4*x^2 =13
b, x^2 +y^2 =2015
CMR : phương trình không có nghiệm
a, 3x^2 -4y^2 = 13
7x^2 +12y^2 = 2013
c, / x-y/ + / y-z/ + / z-x/ = 2015
Tìm nghiệm nguyên của phương trình sau
a,7x^2 +12y^2=2013
b,|x-y|+|y-z|+|z-x| =2015
Chứng minh phương trình sau không có nghiệm nguyên: 7x^2−24y^2=41
Lời giải:
$7x^2-24y^2=41$
$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$
$\Rightarrow x^2\equiv 0,1\pmod 3$
$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)
$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.
Chứng minh phương trình sau không có nghiệm nguyên: 7x^2−24y^2=41
Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\)
\(\Leftrightarrow7x^2-24y^2=48-7\)
\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)
Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)
Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.
Chứng minh phương trình sau không có nghiệm nguyên: 7x^2−24y^2=41
Lời giải:
$7x^2-24y^2=41$
$\Rightarrow 7x^2=41+24y^2\equiv 41\equiv 2\pmod 3(1)$
Nếu $x$ nguyên thì $x^2$ là scp. Ta biết 1 scp khi chia 3 dư $0,1$
$\Rightarrow x^2\equiv 0,1\pmod 3$
$\Rightarrow 7x^2\equiv 0, 7\equiv 0,1\pmod 3$
Nghĩa là $7x^2$ chia 3 dư $0$ hoặc $1$ (2)
$(1); (2)$ mâu thuẫn nhau nên pt không có nghiệm nguyên.
Chứng minh rằng hệ phương trình sau có 1 nghiệm duy nhất với mọi a
\(\int^{7x+y-\frac{a^3}{x^2}=0}_{7y+x-\frac{a^3}{y^2}=0}\)
bạn ơi =12345678
tích cho mình nhé!