Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
na na
Xem chi tiết
Phạm Trọng Tài
Xem chi tiết
Vương Thị Diễm Quỳnh
29 tháng 11 2015 lúc 10:01

gọi d là 1 ước nguyên tố của ab,a+b thế thì ab chia hết cho d và a+b cũng như thế

Vì ab chia hết cho d nên a hoặc b chia hết cho d﴾vì d là số nguyên tố﴿.

Giả sử a chia hết cho d mà a+b chia hết cho d nên b chia hết cho d

=> d là ước nguyên tố của a và b, trái với đề bài cho a và b nguyên tố cùng nhau hay ƯCLN﴾a,b﴿=1

Vậy ............... 

Nguyễn Văn Nghĩa
Xem chi tiết
Vũ Ngọc Duy Anh
10 tháng 3 2018 lúc 8:53

Giả sử an + bn và ab là 2 số nguyên tố cùng nhau.

=> an + bn và ab cùng chia hết cho 1 số nguyên tố d.

=> an + bn + ab chia hết cho d.

=> a(an-1 + b) + bn chia hết cho d.

=> a(an-1 + b) chia hết cho d.

=> a chia hết cho d (1).

=> an-1 + b chia hết cho d => b chia hết cho d (2).

Từ (1) và (2) => a, b cùng chia hết cho 1 số nguyên tố d (trái với giả thiết a, b là 2 số nguyên tố cùng nhau).

=> an + bn và ab không là 2 số nguyên tố cùng nhau.

Vũ Ngọc Duy Anh
10 tháng 3 2018 lúc 8:58

Mình nhầm:

Giả sử an + bn  không là 2 số nguyên tố cùng nhau. Còn kết quả bạn ghi lại cái đpcm

Nguyễn Văn Nghĩa
13 tháng 3 2018 lúc 14:29

là sao bạn, bạn ghi lại bài làm đi cho mình nhá

THI MIEU NGUYEN
Xem chi tiết
Buồn vì chưa có điểm sp
24 tháng 9 2021 lúc 8:47

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

Khách vãng lai đã xóa
Lê Minh Vũ
24 tháng 9 2021 lúc 9:24

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

Khách vãng lai đã xóa
Trần Nguyễn Hoàng Vũ
Xem chi tiết
Clean Master
Xem chi tiết
Le Thi Khanh Huyen
25 tháng 5 2015 lúc 23:26

a) Gọi d ∈ ƯC (a, a + b) ⇒ (a + b) - a  ⋮  d ⇒ b  ⋮  d. Ta lại có a  ⋮  d nên d ∈ ƯC (a, b), do đó d =1 (vì a, b là hai số nguyên tố cùng nhau). Vậy (a, a + b) = 1.

Đinh Tuấn Việt
25 tháng 5 2015 lúc 23:27

Đặt d \(\in\) ƯC(a ; a + b)  \(\Rightarrow\) a chia hết cho d và a + b chia hết cho d.

\(\Rightarrow\) (a + b) - a chia hết cho d \(\Rightarrow\) b chia hết cho d.

Ta có: a chia hết d và b chia hết cho d \(\Rightarrow\) d \(\in\) ƯC(a ; b) , do đó d = 1 (vì a và b là hai số nguyên tố cùng nhau)

Vậy ƯCLN(a ; a + b) = d = 1 nên a và a + b là hai số nguyên tố cùng nhau

Lê Nguyễn Bảo Trân
Xem chi tiết
Nguyễn Phương Thảo
29 tháng 11 2015 lúc 10:04

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

tick nha!

Tớ là Seomate
29 tháng 11 2015 lúc 9:53

CHTT nha Lê Nguyễn Bảo Trân

kaitovskudo
29 tháng 11 2015 lúc 9:57

Như các bạn nếu a và b nguyên tố cùng nhau và ab chia hết cho d chắc gì a đã chia hết cho d hoặc b chia hết cho d

.VD:(4,9)=1 và a.9=36 chia hết cho 6 mà 4 ko chia hết cho6, 9 ko chia hết cho 6

T gaming Meowpeo
Xem chi tiết
Phạm Thế Hanh
Xem chi tiết