[ 1/12 + 1/20 + 1/30 + 1/42 + ... + 1/9900 ] : x = 1/5
Bài 9:Tính tổng
A=3/5*8+11/8*19+12/19*31+70/31*91+99/91*190
B=1/20+1/30+1/42+....+1/9900
Bạn Ác Mộng làm đúng nhưng làm hơi tắt quá
A=1/20+1/30+1/42+...+1/9900 = ?
a/ 1/2 + 5/6 + 11/12 + 19/20
b/ 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42
c/ (1-1/3) + (1-1/15) + (1-1/35) + (1-1/63)
d/ 1/2 + 5/6 + 11/12 + ... + 9899/9900
e/ 2/3 + 14/15 + 34/35 +62/63
f/ 2/3 + 14/15 + 34/35 + ... + 9998/9999
cái này tính cái gì thế
ko hiểu
1/20+1/30+1/42+...1/9900
/ là phân số nha!
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{25-1}{100}=\frac{24}{100}=\frac{6}{25}\)
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\)
\(=\frac{6}{25}\)
k mình nha !
=1/4*5+1/5*6+1/6*7+...+1/99*100.
=1/4-1/5+1/5-1/6+1/6-1/7+...+1/99-1/100.
=1/4-1/100=6/25.
k nha có j kb
Hãy so sánh : \(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{9900}\)với \(\dfrac{1}{2}\)
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\)
Vậy...
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{9900}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\dfrac{1}{2}-\dfrac{1}{100}< \dfrac{1}{2}\left(đpcm\right)\)
Vậy...
A =1+2+3+4+5+...+99+100
B =1/2+1/6+1/12+1/20+1/30+...+1/9900
Giải
\(A=1+2+3+4+5+...+99+100\)
Số số hạng của A là: \(\left(100-1\right)\div1+1=100\)(số hạng)
Tổng A là: \(\frac{\left(100+1\right)\times100}{2}=5050\)
Vây A=5050
\(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)
\(B=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1-\frac{1}{100}=\frac{99}{100}\)
Vậy \(B=\frac{99}{100}\)
A = 1 + 2 + 3 + ... + 99 + 100
A = 100 + 99 + ... + 2 + 1
2A = 101 + 101 +... + 101 + 101 ( 100 số hạng )
A = 101 . 100 : 2 = 5050
Vậy A = 5050
B = 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + ... + 1/9900
B = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 + ... + 1/99.100
B = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100
B = 1/1 - 1/100
B = 99/100
Vậy B = 99/100
A=\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{9900}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(A=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{99\cdot100}\)
\(A=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{4}-\frac{1}{100}\)
\(A=\frac{6}{25}\)
\(A=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{9900}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}\\ =\frac{24}{100}=\frac{6}{25}\)
1-1/6-1/12-1/20-1/30-...........-1/9900
= 1-1/2.3-1/3.4-....-1/99.100
= 1-1/2+1/3-1/3+1/4-......-1/99+1/100
= 1-1/2+1/100
= 51/100
Tk mk nha
A=1/2+1/6+1/12+1/20+1/30......1/9900
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{99\cdot100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\dfrac{1}{1}-\dfrac{1}{100}\)
\(A=\dfrac{99}{100}\)
\(\cdot\) LÀ DẤU \(\times\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\)+ \(\dfrac{1}{30}\)+.....+ \(\dfrac{1}{9900}\)
A = \(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+....+\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)+......+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)