Chứng minh rằng tổng lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.
Chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
Gọi số tự nhiên là n.
Ta có:
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(=3n^3+9n^2+15n+9\)
Ta lấy từng số hạng chia cho 9.
\(3n^3:9\left(R=3\right)\)
\(9n^2⋮9\)
\(15n:9\left(R=6\right)\)
\(9⋮9\)
Mà ta có hai R
\(\Rightarrow15n+3n^3=\left(3+6\right)=9⋮9\)
\(\Rightarrow\left(3n^3+9n^2+15n+9\right)⋮9\)
\(\Leftrightarrow\left(n^3+\left(n+1\right)^3+\left(n+2\right)^3\right)⋮9\)
Vậy tổng lập phương của ba số tự nhiên liên tiếp chia hết cho 9.
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
Hay ta được điều phải chứng minh !!!!!
chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
Gọi 3 số nguyên liên tiếp là: \(a-1;\)\(a;\)\(a+1\)
Tổng các lập phương của 3 số nguyên liên tiếp là:
\(A=\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a\left(a^2+1\right)=3a\left(a^2-1+3\right)=3a\left(a^2-1\right)+9a\)
\(=3\left(a-1\right)a\left(a+1\right)+9a\)
Nhận thấy: \(\left(a-1\right)a\left(a+1\right)\)là tích của 3 số nguyên liên tiếp => chia hết cho 3
=> \(3\left(a-1\right)a\left(a+1\right)\)chia hết cho 9; 9a chia hết cho 9
=> A chia hết cho 9
Gọi \(3\) số nguyên liên tiếp lần lượt là: \(\left(a-1\right);a;\left(a+1\right)\)
Chứng minh: \(\left(a-1\right)^3+a^3+\left(a+1\right)^3\) chia hết cho \(9\).
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3\)
\(=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a\)
\(=3a\left(a^2+2\right)\)
\(=3a\left(a^2-1\right)+9a\)
\(=3\left(a-1\right)a\left(a+1\right)+9a\)
Vì tích của \(3\) số tự nhiên liên tiếp chia hết cho 3 nên \(3\left(a-1\right)a\left(a+1\right)\) chia hết cho \(9\).
Mặt khác \(9a\) chia hết cho \(9\) nên:
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)+9a\)
Ba số nguyên liên tiếp là n,n+1,n+2,ta phải chứng minh:
\(A=n^3+\left[n+1\right]^3+\left[n+2\right]^3⋮9\)
Ta có \(A=n^3+\left[n+1\right]^3+\left[n+2\right]^3=3n^3+9n^2+15n+9\)
\(=3n^3-3n+18n+9n^2+9=3n\left[n-1\right]\left[n+1\right]+18n+9+9n^2\)
n,n-1,n+1 là ba số nguyên liên tiếp,trong đó một số chia hết cho 3
Vậy \(B=3n\left[n-1\right]\left[n+1\right]⋮9;C=18n+9n^2+9⋮9\)
A = B + C mà \(B⋮9,C⋮9\Rightarrow A⋮9\)
Chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
Chứng minh 3a^3 + 6a chia hết cho 9. (*)
Với a = 0:
3a^3 +6a = 0 chia hết cho 9 (TM).
Suy ra Suy ra (*) đúng với a = 0 (1)
Giả sử: (*) đúng với a = k. (k thuộc Z) (2), ta có:
3a^3 +6a = 3k^3 + 6k chia hết cho 9.
Chứng minh (*) đúng với a = k+1:
3a^3 + 6a = 3(k+1)^3 + 6(k+1) = 3k^3 +9k^2 +15k +9 = (3k^3 +6k) + 9(k^2 +k +1) chia hết cho 9
(do 3k^3 +6k chia hết cho 9 theo giả thiết quy nạp, 9(k^2 +k +1) luôn chia hết cho 9)
Suy ra (*) đúng với a = k+1(3)
Chứng minh (*) đúng với a = k-1:
3a^3 + 6a = 3(k-1)^3 + 6(k-1) = 3k^3 -9k^2 +15k -9 = (3k^3 +6k) -9(k^2 +k -1) chia hết cho 9
do 3k^3 +6k chia hết cho 9 theo giả thiết quy nạp, -9(k^2 +k -1) luôn chia hết cho 9)
Suy ra (*) đúng với a = k-1(4)
Từ (1);(2);(3) và (4) suy ra:
Tổng 3 lập phuơng của 3 số nguyên liên tiếp luôn chia hết cho 9.(đpcm)
Chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
Gọi 3 STN liên tiếp là \(a-1,a,a+1\)
Ta có:
\(a^3+\left(a-1\right)^3+\left(a+1\right)^3\)
\(=a^3+a^3-3a^2+3a-1+a^3+3a^2+3a+1\)
\(=3a^3+6a\)
\(=3\left(a^3-a\right)+9a\)
\(=3a\left(a-1\right)\left(a+1\right)+9a⋮9\)
Có gì sai thì bạn bảo mình nhé.
Chứng minh rằng tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.
Câu hỏi của Đoàn Văn Toàn - Toán lớp 7 - Học toán với OnlineMath
Tham khảo
Chứng minh tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Mk cho bn link này tham khảo nhé!
Chúc bạn học tốt !!!
Chứng minh rằng :Tổng lập phương của 3 số nguyên liên tiếp chia hết cho 9 !!
Gọi 3 số nguyên liên tiếp là x -1 ; x ; x + 1 .
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3(x - 1)x(x + 1) +9x
Vì (x - 1)x(x + 1) chia hết cho 3 nên 3(x - 1)x(x + 1) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
=> 3(x - 1)x(x + 1) + 9x chia hết cho 9
=> ĐPCM
Chứng minh rằng: Tổng các lập phương của 3 số nguyên liên tiếp chia hết cho 9
Gọi 3 số lần lượt là 3x, 3x+1, 3x+2
ta có tổng lập phương của 3 số đó là:
27x3+27x3+27x2+9x+1+27x3+54x2+36x+8 (Chia hết cho 9 ) => điều phải CM
Chứng minh rằng tổng lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.
Các bn giúp mk nha❤❤😊
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
chứng minh: Tổng lập phương của ba số nguyên liên tiếp thì chia hết cho 9
Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2 (a thuộc Z)
Ta có \(\left[a+\left(a+1\right)+\left(a+2\right)\right]^3=\left(3a+3\right)^3=\left[3\left(a+1\right)\right]^3=27\left(a+1\right)^3⋮9\)
=> đpcm
Tổng lập phương mà Hùng :
\(a^3+\left(a+1\right)^3+\left(a+2\right)^3\)
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!