Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hữu Minh Khang
Xem chi tiết
Akai Haruma
28 tháng 8 2021 lúc 16:47

Lời giải:

Đặt $\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=t$

$t^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}(1)$

Áp dụng tính chất dãy tỉ số bằng nhau:

$t^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}(2)$

Từ $(1);(2)$ ta có đpcm.

KuDo Shinichi
Xem chi tiết
Lê Chí Cường
26 tháng 1 2016 lúc 10:26

Ta có: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=>\(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{b}{c}.\frac{b}{c}.\frac{b}{c}=\frac{c}{d}.\frac{c}{d}.\frac{c}{d}\)

=>\(\frac{a.b.c}{b.c.d}=\frac{a.a.a}{b.b.b}=\frac{b.b.b}{c.c.c}=\frac{c.c.c}{d.d.d}\)

=>\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>\(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=>ĐPCM

Tuyết Băng Lan
Xem chi tiết
Nguyên Ngân Hà
Xem chi tiết
Nguyễn Việt Hoàng
4 tháng 9 2020 lúc 15:33

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)

Vậy.............

Khách vãng lai đã xóa
ミ★Ƙαї★彡
4 tháng 9 2020 lúc 15:36

Áp dụng t/c dãy tỉ số bằng nhau 

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Suy ra  \(\left(\frac{a}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)

Ta có ddpcm 

Khách vãng lai đã xóa
Huyen Trang
4 tháng 9 2020 lúc 15:40

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\) \(\left(k\inℝ\right)\)

=> \(\hept{\begin{cases}a=bk\\b=ck\\c=dk\end{cases}}\Leftrightarrow\hept{\begin{cases}a=dk^3\\b=dk^2\\c=dk\end{cases}}\)

Thay vào ta được: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

\(=\frac{d^3k^9+d^3k^6+d^3k^3}{d^3k^6+d^3k^3+d^3}=\frac{d^3k^3\left(k^6+k^3+1\right)}{d^3\left(k^6+k^3+1\right)}=k^3\)

mà \(\frac{a}{d}=\frac{dk^3}{d}=k^3\)

=> \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

Khách vãng lai đã xóa
hải yến gaming tv
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Vũ Minh Tuấn
29 tháng 11 2019 lúc 18:41

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

Khách vãng lai đã xóa
Trần Quốc Tuấn hi
29 tháng 11 2019 lúc 18:30

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

Khách vãng lai đã xóa
Akai Haruma
29 tháng 11 2019 lúc 19:00

Bài 2:

CM vế thứ nhất:

Với $a,b,c,d>0$:

\(\left\{\begin{matrix} \frac{a}{a+b+c}>\frac{a}{a+b+c+d}\\ \frac{b}{b+c+d}>\frac{b}{a+b+c+d}\\ \frac{c}{c+d+a}>\frac{c}{a+b+c+d}\\ \frac{d}{d+a+b}>\frac{d}{a+b+c+d}\end{matrix}\right.\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a+b+c+d}{a+b+c+d}=1\)

CM vế thứ 2:

Xét hiệu \(\frac{a}{a+b+c}-\frac{a+d}{a+b+c+d}=\frac{a(a+b+c+d)-(a+d)(a+b+c)}{(a+b+c)(a+b+c+d)}=\frac{-d(b+c)}{(a+b+c)(a+b+c+d)}< 0\) với mọi $a,b,c,d>0$

\(\Rightarrow \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)

Hoàn toàn tương tự:

\(\frac{b}{b+c+d}< \frac{b+a}{b+c+d+a}; \frac{c}{c+d+a}< \frac{c+b}{c+d+a+b}; \frac{d}{d+a+b}< \frac{d+c}{d+a+b+c}\)

Cộng theo vế:

\(\Rightarrow \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d+b+a+c+b+d+c}{a+b+c+d}=\frac{2(a+b+c+d)}{a+b+c+d}=2\)

Ta có đpcm.

Khách vãng lai đã xóa
Nguyễn Thị Thùy Linh
Xem chi tiết
Nguyễn Linh Chi
7 tháng 9 2019 lúc 13:51

Ta co: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}\)

=>. \(\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)

Ta co: \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

          \(\Rightarrow\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}=\frac{a^3-c^3}{b^3-d^3}\)

Vũ Minh Đức
Xem chi tiết
nguyen van wwe
Xem chi tiết