Tìm n là số tự nhiên sao cho(n+7) chia hết cho(n-2).
1, n.(n+1) . (n+2) . (n+3) chia hết cho 3 và 8
2,
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp
3,
Tìm số nguyên x, biết:
a) 2x - 1 là bội số của x - 3
b) 2x + 1 là ước của 3x + 2
c) (x - 4).(x + 2) + 6 không là bội của 9
d) 9 không là ước của (x - 2).(x + 5) + 11
4,
Tìm số nguyên a, b, sao cho:
a) (2a - 1).(b2 + 1) = -17
b) (3 - a).(5 - b) = 2
c) ab = 18, a + b = 11
5,
Tìm số nguyên x, sao cho:
a) A = x2 + 2021 đạt giá trị nhỏ nhất
b) B = 2022 - 20x20 - 22x22 đạt giá trị lớn nhất.
Bài 1.Tìm số tự nhiên n sao cho: 2n + 7 chia hết cho n + 2
Bài 2.Chứng minh rằng:
a/ Với mọi số tự nhiên n thì (n+3)(n+10) chia hết cho 2
b/ Với mọi số tự nhien n thì (n+3)(n+6) chia hết cho 2
c/ Với mọi số tự nhiên n thì (5n+7)(4n+6) chia hết cho 2
1. Tìm số tự nhiên nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5 và 6 luôn có số dư là 1.
2. Tìm tất cả các số tự nhiên n sao cho
a) n chia hết cho 9 và n+1 chia hết cho 25
b) n chia hết cho 21 và n+1 chia hết cho 165
c) n chia hết cho 9, n +1 chia hết cho 25 và n+2 chia hết cho 4
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1. n = 301
2.a) n = 99
b) không có
c) n = 774
1. tìm số lớn nhất có 3 chữ số mà khi chia số đó cho 65 ta được thương và số dư bằng nhau
2. tìm số tự nhiên n sao cho 4 - n chia hết cho n+1
3. tìm số tự nhiên k sao cho 7-k chia hết cho k-2
câu 1:ta có số 975 chia hết cho 65 và lớn nhất
ta có:975/65=15
lại có thương=số dư suy ra số dư =15
suy ra số cần tìm là 975+15=990
Vậy số cần tìm là 990
câu 2 =4
câu 3 = 3
tick đi mình cho lời giải chi tiết
1, tìm số tự nhiên N sao cho 3n+7 chia hết cho n+1
2, tìm số nguyên n sao cho 2n+ 3/3n+
\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)
Tìm số tự nhiên n sao cho: (n^2+2n+7)chia hết cho (n+2)
Giúp mình với! Mai phải nộp rồi!
B1: TÌm số tự nhiên n sao cho n chia hết cho 21 và n+1 chia hết cho 165
B2: Tìm x,y thuộc Z sao cho:
A, 5x + 4y = 3
B, 3x + 7y = 55
B3: TÌm số tự nhiên n nhỏ nhất chia hết cho 7 và khi chia cho 2,3,4,5,6 đều dư 1
B4: Tìm tất cả các số tự nhiên n để 5n+2 chia hết cho 17
Ta có: n+1 chia hết cho 165
=> n+1 thuộc B(165) = { 0 ; 165;330;495;660.....}
=> n = { -1 ; 164 ; 329 ; 494;659;............}
Vì n chia hết cho 21
=> n =
bây sai cả 5n+ 1 chia hết cho 7 thì kết quả là số tự nhiên
đùa đó 5n+ 1 chia hết cho 7
=> 5n+ 1- 14 chia hết cho 7
=> 5n- 15
ta có: 5n+ 1- 14= 5n- 15= 5.(n-1)
=> 5.(n-1) chia hết cho n- 1
=> n= 7k+ 1 (k E N)
tìm 2 số tự nhiên sao cho n+7 chia hết cho n+2
bài này đẽ
n+7 chia hết cho n+2
=> n+7-(n+2) chia hết cho n+2
=> 5 chia hết cho n+2
Vì n là STN =>
n+2\(\ge\)2
=> n+2=5
=>n=3
Ta có n + 7 chia hết cho n +2
=> n + 7 - n - 2 chia hết cho n + 2
=> 5 chia hết cho n + 2
Ta có n thuộc N
=> n + 2 = 5
=> n = 5-2
=> n = 3
T nha các bạn
n+7 chia hết n+2
=(n+2)+5 chia hết n+2
=>n+2 thuộc ước của 5
=>ước(5)={-1; 1; -5; 5}
=>n+2=-1 =>n=-3
n+2=1=>n=-1
n+2=5=>n=3
n+2=-5=>n=-7
vậy n=-3;-1;3;-7
mình chắc chắn là đúng!
tìm n là số tự nhiên sao cho (n+7) chia hết cho( n-2)
các bạn hãy giúp mình nhé!
\(n+7⋮n-2\)
\(\Rightarrow\left(n-2\right)+9⋮n-2\)
Mà \(n-2⋮n-2\)
\(\Rightarrow9⋮n-2\)
\(\Rightarrow n-2\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Đến đây bn tự làm nốt nha !
~Study well~
#SJ
Ta có:
\(\left(n+7\right)⋮\left(n-2\right)\)
\(\Leftrightarrow\left(n-2+9\right)⋮\left(n-2\right)\)
\(\Rightarrow9⋮\left(n-2\right)\)
\(\left(n-2\right)\inƯ\left(9\right)\)
\(n-2\in\left\{-1;-3;-9;1;3;9\right\}\)
n - 2 | -1 | -3 | -9 | 1 | 3 | 9 |
n | 1 | -1 | -7 | 3 | 5 | 11 |
=> n ∈ {-7; -1; 1; 3; 5; 11}
Chúc bạn học tốt !!!
=> (n + 7) : (n - 2 )
=> (2 + 7) : (2 - 2 ) = 9 : 0 = 0 ( đáp án này không khả thi lắm nên mk loại )
=> (3 + 7) : (3 - 2 ) = 10 : 1 = 10
Nên n = 3 ( n cũng có thể bằng 2 nhưng mk nghĩ là ko thik hợp lắm)