tìm các số nguyên a thỏa mãn (a^2+1)x(a^2-2)x(a^2-5)<0
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
1. Tìm tất cả các số nguyên x, y thỏa mãn : x(2y+3)=y+1.
2. Tìm tất cả các số nguyên X thỏa mãn
a) (x+2) là bội của (×^2-7)
b) (-1)+3+(-5)+7+...+x=2002.
Giải giúp mình đi . Giải cụ thể nhé.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
Bài 1. Tìm các số thực x thỏa mãn:
a. |3 − |2x − 1|| = x − 1
b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36
c. |x − 2| + |x − 3| + ... + |x − 9| = 1 − x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số
chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|
có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn.
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y
=> x + 5 > 0
=> \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)
<=> \(x+5\ge2x^2+x+1\)
<=> \(x^2\le2\)
Vì x nguyên => x = 0 ; x = 1; x = -1
Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)
Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên
Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)
Vậy Phương trình có 4 nghiệm:...
Tìm các số nguyên x, thỏa mãn : a)x/5=-12/10;b)x+1/2=x/3
Tìm các số nguyên x;y thỏa mãn:
a) 1/x + y/6 = 1/2
b) x/2 - 2/y = 1/5
b1. Cho biểu thức \(A=\left(\frac{4x}{2+x}+\frac{8x^2}{4-x^2}\right):\left(\frac{x-1}{x^2-2x}-\frac{2}{x}\right)\)rút gọn A và tìm giá trị của x để A<0
b2. a) Tìm các số nguyên x, y thỏa mãn \(x^3+3x=x^2y+2y+5\)
b)tìm các số nguyên x; y thỏa mãn \(18x^2-3xy-5y=25\)
b3. cho các số thực a, b, c thỏa mãn \(a^2+b^2+c^2\le8\). Tìm GTNN của biểu thức sau: S= 2016ac-ab-bc
lm hộ mk vsss mn
b1:
ĐKXĐ: \(x\ne0;x\ne\pm2\)
Ta có : \(A=\left(\frac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{8x^2}{x^2-4}\right)\left(\frac{x-1}{x\left(x-2\right)}-\frac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x^2-8x-8x^2}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{x-1-2x+4}{x\left(x-2\right)}\right)\)
\(=\left(\frac{4x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right)\left(\frac{3-3x}{x\left(x-2\right)}\right)\)
\(=\frac{12\left(x-1\right)}{x-2}\)
Vậy ....
Ta có : \(A< 0\Rightarrow\frac{12\left(x-1\right)}{x-2}< 0\)
Đến đây xét 2 TH 12(x-1)<0 & (x-2)>0 hoặc 12(x-1)>0 & (x-2)<0
b2 :
b) Ta có: \(18x^2-3xy-5y=25\Leftrightarrow9x^2-3xy+\frac{1}{4}y^2+9x^2-\frac{1}{4}y^2-5y-25=0\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2+9x^2-\left(\frac{1}{2}y+5\right)^2=0\Leftrightarrow\left(3x-\frac{1}{2}y\right)^2-25+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y+5\right)\left(3x-\frac{1}{2}y-5\right)+\left(3x-\frac{1}{2}y-5\right)\left(3x+\frac{1}{2}y+5\right)=-25\)
\(\Leftrightarrow\left(3x-\frac{1}{2}y-5\right)\left(6x+10\right)=-25\Leftrightarrow\left(6x-y-10\right)\left(3x+5\right)=-25\)
đến đây xét các TH. Ví dụ 1 TH :
\(\hept{\begin{cases}6x-y-10=1\\3x+5=-25\end{cases}\Rightarrow\hept{\begin{cases}y=-41\\x=-10\end{cases}}\left(tm\right)}\)
Làm tương tự với các TH còn lại
1.Cho 3 số tự nhiên a,b,c đôi một khác nhau thỏa mãn a+b+c=0
tính A=ab/(a^2+b^2-c^2)+bc/(b^2+c^2-a^2)+ac/(a^2+c^2-b^2)
2.Tìm 3 số nguyên tố liên tiếp a,b,c để a^2+b^2+c^2 nguyên tố
3.Cho x,y,z đôi một khác nhau
cmr: M-1/(x-y)^2+1/(y-z)^2+1/(z-x)^2 là binhg phuiwng 1 số hữu tỉ
4.Cho A=(x^2+x+2)/(x^3-1)
Tìm x nguyên để A nguyên
5.Tìm x,y thỏa mãn (X^2+1)(x^2+y^2)=4x^2y
Giúp mk nha các bạn