diễn đàn toán học cho x^2+y^2+z^2=1.tìm giá trị nhỏ nhất của A=x/y^+z^2 +y/z^2+x^2+z/x^2+y^2
Giải hộ mình bài toán sau:
1. Cho 3 số x, y, z thỏa mãn:
xy + yz+ zx = 8
x + y + z = 5
Tìm giá trị nhỏ nhất, lỡn nhất của x.
2. Cho 3 số x, y, z thỏa mãn:
xy + yz + zx = 1
x2+y2+z2=2
Tìm giá trị lớn nhất nhỏ nhất của x.
Nhờ mọi người giải giúp em hai bài toán này với ạ .
1) giải phương trình :
x +3x/√(x^2-9) =6√2
1) Cho các số thực dương thỏa mãn √(x^2+y^2) +√(y^2+z^2) +√(z^2+x^2) = 2015
Tìm giá trị nhỏ nhất của T=x^2/(y+z) +y^2/(z+x) +z^2/(x+y)
Cho x ≥0; y ≥ 0; z ≥ 0 thỏa mãn x + y + z = 2. Tìm giá trị nhỏ nhất của biểu thức: P= x^2/y+z + y^2/x+z + z^2/x+y
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{x^2}{x+y}.\frac{x+y}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}\ge y\)
\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge2\sqrt{\frac{z^2}{x+y}.\frac{x+y}{4}}\ge z\)
Cộng từng vế các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z=1\)
Vậy Min P=1 \(\Leftrightarrow x=y=z=1\)
anh Châu ơi, 1+1+1 đâu có = 2 anh.
à anh xl nhầm x=y=z=\(\frac{2}{3}\)
Cho x, y, z > 0 và x+y+z = 3. Tìm giá trị nhỏ nhất của: a) P = 1/(x^2+1) + 1/(y^2+1 + 1/(z^2+1)
cho x,y,z>0 và x+y+z=3 tính giá trị nhỏ nhất của (1/x+x^2)+(1/y+y^2)+(1/z+z^2)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x(x+1)}+\frac{x}{2}+\frac{x+1}{4}\geq 3\sqrt[3]{\frac{1}{x(x+1)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}$
Tương tự:
$\frac{1}{y(y+1)}+\frac{y}{2}+\frac{y+1}{4}\geq \frac{3}{2}$
$\frac{1}{z(z+1)}+\frac{z}{2}+\frac{z+1}{4}\geq \frac{3}{2}$
Cộng theo vế các BĐT trên:
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{4}(x+y+z)+\frac{3}{4}\geq \frac{9}{2}$
$\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{9}{4}+\frac{3}{4}\geq \frac{9}{2}$
$\Rightarrow \frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\geq \frac{3}{2}$
Vậy gtnn của biểu thức là $\frac{3}{2}$ khi $x=y=z=1$
cho 3 số thực dương x,y,z thoả mãn x^2>= y^2 +z^2 tìm giá trị nhỏ nhất của biểu thức: A= 1/x^2 .(y^2 +2^2 )+x^2.(1/y^2 + 1/2^2 ) +2024
a,Tìm x,y,z biết: \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)
b,Tìm GTNN(Giá trị nhỏ nhất) của \(A=\dfrac{5x^2-x+1}{x^2}\)
Cho x , y , z là các số dương và xy + yz + xz = 3 . Tìm giá trị nhỏ nhất của biểu thức :A=\(\dfrac{x^2}{z\left(z^2+x^2\right)}+\dfrac{y^2}{x\left(x^2+y^2\right)}+\dfrac{z^2}{y\left(y^2+z^2\right)}\)
Cho \(x;y;z>0\)
Tìm giá trị nhỏ nhất:
\(A=\dfrac{x^2}{x+yz}+\dfrac{y^2}{y+zx}+\dfrac{z^2}{z+xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
\(A=\dfrac{2x^2}{2x+2yz}+\dfrac{2y^2}{2y+2zx}+\dfrac{2z^2}{2z+2xy}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
\(A\ge\dfrac{2x^2}{x^2+1+y^2+z^2}+\dfrac{2y^2}{y^2+1+z^2+x^2}+\dfrac{2z^2}{z^2+1+x^2+y^2}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
\(A\ge\dfrac{2\left(x^2+y^2+z^2\right)}{x^2+y^2+z^2+1}+\dfrac{9}{8\left(x^2+y^2+z^2\right)}\)
Đặt \(x^2+y^2+z^2=a>0\)
\(\Rightarrow A\ge\dfrac{2a}{a+1}+\dfrac{9}{8a}=\dfrac{2a}{a+1}+\dfrac{9}{8a}-\dfrac{15}{8}+\dfrac{15}{8}\)
\(\Rightarrow A\ge\dfrac{\left(a-3\right)^2}{8a\left(a+1\right)}+\dfrac{15}{8}\ge\dfrac{15}{8}\)
\(A_{min}=\dfrac{15}{8}\) khi \(a=3\) hay \(x=y=z=1\)